/
NUMERICAL OPTIMIZATION OF LOUDSPEAKER CONFIGURATION FOR SOU NUMERICAL OPTIMIZATION OF LOUDSPEAKER CONFIGURATION FOR SOU

NUMERICAL OPTIMIZATION OF LOUDSPEAKER CONFIGURATION FOR SOU - PowerPoint Presentation

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
402 views
Uploaded On 2016-11-15

NUMERICAL OPTIMIZATION OF LOUDSPEAKER CONFIGURATION FOR SOU - PPT Presentation

Philip Coleman Philip J B Jackson Marek Olik pdcolemansurreyacuk Centre for Vision Speech and Signal Processing University of Surrey Guildford Surrey GU2 7XH UK Jan Abildgaard ID: 489075

loudspeaker sound contrast zone sound loudspeaker zone contrast personal metrics array evaluation acoust optimal soc arrays results coleman introduction

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "NUMERICAL OPTIMIZATION OF LOUDSPEAKER CO..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

NUMERICAL OPTIMIZATION OF LOUDSPEAKER CONFIGURATION FOR SOUND ZONE REPRODUCTION

Philip Coleman, Philip J. B. Jackson, Marek Olikp.d.coleman@surrey.ac.ukCentre for Vision, Speech and Signal Processing,University of Surrey, Guildford, Surrey, GU2 7XH, UK Jan Abildgaard PedersenBang & Olufsen A/S (now with Dynaudio A/S, Sverigesvej 15, 8660 Skanderborg, DK)

15th July 2014

Paper

#219,

Session

SS06ASlide2

Introduction

Personal sound is an active research topicSlide3

Introduction

Personal sound is an active research topicA number of control strategies proposed [1][1] P. Coleman, P. J. B. Jackson, M. Olik, M. Møller, M. Olsen, and J. Pedersen, “Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array,” J. Acoust. Soc. Am. 135(4), p.1929-1940, 2014. Slide4

Introduction

Loudspeaker arrays for personal audio:Compact line array [e.g. 2,3][2] J.-H. Chang, C.-H. Lee, J.-Y. Park, and Y.-H. Kim, “A realization of sound focused personal audio system using acoustic contrast control,” J. Acoust. Soc. Am. 125(4), p. 2091–2097, 2009[3] Simón-Gálvez, M. F., Elliott, S. J., & Cheer, J. “The effect of reverberation on personal audio devices.” J. Acoust. Soc. Am. 135(5), 2654-2663, 2014.Slide5

Introduction

Loudspeaker arrays for personal audio:Compact line array Circular array [e.g. 4,5]

[4]

 F. Jacobsen, M. Olsen, M.

Møller

, and F.

Agerkvist

,

“A comparison of two strategies for generating sound zones in a room,” in

Proc. 18

th

ICSV,

Rio de Janeiro, Brazil, 10-14 July 2011

.

[5]

M. Shin, S. Q. Lee, F. M.

Fazi

, P. A. Nelson, D. Kim, S. Wang, K. H. Park, and J.

Seo

(2010), “Maximization of acoustic energy difference between two spaces,

.

Acoust

. Soc. Am.

128(1)

, p.

121-131, 2010Slide6

Introduction

Loudspeaker arrays for personal audio:Compact line arrayCircular arrayBoth array types may have benefitsUsers may have some freedom to position loudspeakersWe investigate optimal loudspeaker placementSlide7

Introduction

Best positions for N loudspeakers ?Can optimized arrays give…Improved cancellation?Better control of target sound field?Reduced power consumption?Increased robustness?Improved compensation for room?

?

?

?Slide8

Introduction

Previous workCrosstalk cancellation [6,7]Sound zones [8]???

[6] M. R. Bai, C.-W. Tung, and C.-C. Lee, “Optimal design of loudspeaker arrays for robust cross-talk cancellation using the taguchi method and the genetic algorithm,”

J.

Acoust

. Soc. Am. 117(5)

,

p

. 2802–

2813, 2005

[

7

] T

. Takeuchi and P. A.

Nelson,

“Optimal source distribution for binaural synthesis over

loudspeakers”,

J.

Acoust

. Soc. Am.

112(6), p.

2786–

2797, 2002[8] P. Coleman, M. Møller

, M. Olsen, M. Olik, P. J. B. Jackson, and J. Pedersen (Abstract), “Performance of optimized sound field control techniques in simulated and real acoustic environments,” in J. Acoust. Soc. Am., 131(4),

p. 3465, 2012. Presented at Acoustics 2012, Hong Kong, 13-18 May 2012, available viawww.posz.orgSlide9

Approach

Sound zone source weights calculated with acoustic contrast control [9,10]constraint on source weightsdark zone energybright zone energy

[

9

]

J-W. Choi and Y-H Kim, “Generation of an acoustically bright zone with an illuminated region using multiple sources”, J.

Acoust

. Soc. Am. 111, 1695–1700, 2002

.

[10] Elliott

, S. J., Cheer, J., Choi, J. W., & Kim,

Y.

Robustness and regularization of personal audio systems. IEEE

Trans. ASLP,

20(7), 2123-

2133, 2012.Slide10

Evaluation metrics

Generalizable set of metricsEvaluation metricLinked characteristicsContrastMinimal interferencePlanarity [11]Spatial sound distributionControl effortRobustness, low electrical power[11] P. J. B. Jackson, F. Jacobsen, P. Coleman and J. Pedersen, “Sound field planarity characterized by

superdirective beamforming”, in Proc. 21st ICA, Montreal, 2-7 June 2013.Slide11

Evaluation metrics

Evaluation metricLinked characteristicsContrastMinimal interferencePlanaritySpatial sound distributionControl effortRobustness, low electrical powerobserved sound pressures in zone Aobserved sound pressures in zone Bnumber of observation microphones in zone B

number of observation microphones in zone AGeneralizable set of metricsSlide12

Evaluation metrics

energy coincident with the principal plane wave directiontotal energy in the zoneEvaluation metricLinked characteristicsContrastMinimal interferencePlanaritySpatial sound distributionControl effortRobustness, low electrical powerGeneralizable set of metricsSlide13

Evaluation metrics

sum of squared loudspeaker weightsreference loudspeaker weightEvaluation metricLinked characteristicsContrastMinimal interferencePlanaritySpatial sound distributionControl effortRobustness, low electrical power

Generalizable set of metricsSlide14

Objective function

Defined optimization cost function based on physical metricsWhereChoose or optimize weighting coefficientsCould use perceptual model [12][12] J. Francombe, P. Coleman, M. Olik, K. Baykaner, P. J. B. Jackson, R. Mason, M. Dewhirst, S Bech and J. Pedersen, "Perceptually optimized loudspeaker selection for the creation of personal sound zones, in Proc. 52nd AES Int. Conf., Guildford, UK, 2-4 Sept. 2013.Slide15

Approach

Sequential Forward-Backward Search [13]+2, -1Applied each element in turnFocus here on contrast-only caseOther results included in paperSelected between 6 and 30 optimal positions based on predicted performance (mean at 100, 200, ..., 4000 Hz for both zones)[13]  P. A. Devijver and J. Kittler (1982), Pattern recognition: A statistical approach. Englewood Cliffs, NJ: Prentice/Hall International., p.220 Slide16

Reproduction setup

60 channel circular candidate arrayTwo 25 × 35 cm zonesIndependent performance measurement setSlide17

Results

Array configurations10 loudspeaker exampleContrast-onlyArcCircleSlide18

Results

Acoustic contrast (average over freq.)Circle worst over frequencyOptimal set best for 6 loudspeakersContrast-onlySlide19

Results

10 loudspeakers over frequencyContrast-only

6 dB

?Slide20

Results

Sound pressure level2650 Hz notch, simulated in free-fieldContrast-only

Dark zone

Bright zoneSlide21

Summary

Loudspeaker array geometries not previously investigated for sound zonesProposed objective function based on physical metricsImproved min. contrast by 6 dB compared to reference arrays (10 loudspeaker example)Further work should investigate:Weighting of cost functionExtended loudspeaker setsAdvanced numerical search methodsSlide22

Stereophonic personal audio reproduction using planarity control optimization

Paper #558Did you see my last talk?

Numerical optimization of loudspeaker configuration for sound zone reproductionSlide23

Acknowledgements

www.linkedin.com/in/philipcolemanaudiop.d.coleman@surrey.ac.ukThanks to Alice Duque who made RIR measurementsSlide24

Results

Optimal 10 channel arrays for other weights:

Contrast-only

Effort-

only

Condition-

only

Planarity-onlySlide25

Results

Optimal 10 channel arrays:

Contrast-only

Effort-

only

Cond-only

Planarity-onlySlide26

Implementation

Measure room responses (60 × 768)Select optimal loudspeakersCalculate optimal source weights for each frequencyInverse FFT/shift to make FIR filters (×60)Independent performance measurement set