PDF-2GIDEONAMIRANDORIGUREL-GUREVICHallregulartrees.Forunimodulargraphsthefollowingsymmetryprincipleholds:MassTransportPrinciple:LetG=(V;E)beaunimodulargraph,andassumeF:VV![0;1]isautomorphisminvariant(i.e.F( v; y)=f(x;y)forany 2Aut(G)),thenforanyv2VwehaveXw2V

Author : conchita-marotz | Published Date : 2015-07-21

4GIDEONAMIRANDORIGURELGUREVICHcallxv0acandidateAcandidatewhichisactuallynon xatingisgoodandtherestofthecandidatesarebadByourapproximationstheprobabilitythatxv0isabadcandidateisboundedbyLetbP

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "2GIDEONAMIRANDORIGUREL-GUREVICHallregula..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

2GIDEONAMIRANDORIGUREL-GUREVICHallregulartrees.Forunimodulargraphsthefollowingsymmetryprincipleholds:MassTransportPrinciple:LetG=(V;E)beaunimodulargraph,andassumeF:VV![0;1]isautomorphisminvariant(i.e.F( v; y)=f(x;y)forany 2Aut(G)),thenforanyv2VwehaveXw2V: Transcript


4GIDEONAMIRANDORIGURELGUREVICHcallxv0acandidateAcandidatewhichisactuallynon xatingisgoodandtherestofthecandidatesarebadByourapproximationstheprobabilitythatxv0isabadcandidateisboundedbyLetbP. MARYAMMIRZAKHANIgrowthof),itprovesfruitfultostudydierenttypesofsimpleclosedgeodesicsonseparately.Letg,nbeaclosedsurfaceofgenusboundarycomponents.ThemappingclassgroupModg,nactsnaturallyonthesetofisoto {z }=x'('1(y))| {z }=y='1''1(x)'1(y)='1(x)'1(y);whichshowsthat'12Aut(G).aDefinition.If':G!Hisahomomorphism,thenx2G:'(x)=eH iscalledthekernelof'andisdenotedbyker(').Theorem6.4.Let':G!Hbeah ,andhencealllogicalconsequencesoftheseaxiomsaretrueinN .Butthisproofisnot nitary,becauseitinvolvesaninductiononastatementmentioningthein nitesetN.Proof:Weprovethecontrapositive.SupposethatPA`G,i.e.PA` distancesaredistinguishedbyAut(G)-orbit.Thatis,d(x;y)=d(u;v)ifandonlyifthereexists2Aut(G)sothatf(x);(y)g=fu;vg.ConsiderthesepointsEuclideanverticesandaddEuclideanedgesasappropriatetoobtainG.Thisisa Algorithm1:Triangle(G=(V;E)) foreachv2Vdo foreachs;t2N(v)do if(s;t)2Ethen return(v;s;t); return\Notriangle"; Proof.ConsiderAlgorithm1.IfGcontainsatriangle(a;b;c),theninsomeiterationofthealgorithm,v=aa Notation Denition SSym( )sharplytransitive:Forany ; 2 exactlyoneg2Swith g= Denition SSym( )sharply2transitive:Ssharplytransitiveonpairs( 1; 2), 16= 2 ObservationbyErnstWitt: Projectiveplaneoford n=1(z)whichisthe(asymptotic)probabilityinthetail.Instead,supposeweseekthefollowingprobabilityPrXn+=??,whereisxed.Doesthecentrallimittheoremsayanythinguseful?Itiseasytoseethat,foranylimn!1P 4GIDEONAMIRANDORIGUREL-GUREVICHFortheoriginalARWmodel,corollary1.2wasprovedindependentlybyShellef[5],usingcompletelydi erentmethods,onanyboundeddegreegraph.Themainmeritofourproofisthatalthoughthegraph 2(j+k1)(j+k2)+j:Thisexamplegeneralizesto:NN:::NN;forany( nite)numberoffactorsinthecartesianproductontheleft.Thisfollowsfromthenextexample.Ex.3.LetA;B;C;Dbesets.IfACandBD,thenABCD.Proof.Byde 4S.CAENEPEEL,J.VERCRUYSSE,ANDSHUANHONGWANGleftA-module,thenCisre exive.Forany'2(C),wethenhavethat'=i(Pj'(fj)cj).GaloiscoringsandDescentTheory.LetCbeanA-coring.Recallthatx2CiscalledgrouplikeifC(x)=x Figure1:S-moveandA-movef\r1;\r2g|f\r1;\r3g|f\r3;\r4g|f\r4;\r5g|f\r4;\r6g|f\r2;\r6gwhereallcurves\r1;:::;\r6lieinacommonsubsurfaceoftype1;2,\r1|\r4and\r2|\r4beingS-movesandallothermovesbeingA-moves,co 2HUYIHUANDANNATALITSKAYAbecausethespaceweworkwithisfourdimensional.Second,thetechniquetoremovethesecondzeroLyapunovexponentismoredelicate.WhilewechangethelastLyapunovexponent,weneedtokeepallotherexpon 3SpecialthankstoBillZameforhisinvaluablehelponTheorem1ofthispaperWewouldalsoliketothankPeterEsoIanJewittMegMeyerAdrienVigierJoelShapiroInaTanevaandPeytonYoungfortheircommentsandadviceyDepartmentofEcon CorinnaCortesGoogleResearchNewYorkNY10011corinnagooglecomYishayMansourTel-AvivUniversityTel-Aviv69978IsraelmansourtauacilMehryarMohriCourantInstituteandGoogleNewYorkNY10012mohricimsnyueduAbstractThisp

Download Document

Here is the link to download the presentation.
"2GIDEONAMIRANDORIGUREL-GUREVICHallregulartrees.Forunimodulargraphsthefollowingsymmetryprincipleholds:MassTransportPrinciple:LetG=(V;E)beaunimodulargraph,andassumeF:VV![0;1]isautomorphisminvariant(i.e.F( v; y)=f(x;y)forany 2Aut(G)),thenforanyv2VwehaveXw2V"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents