PDF-2GIDEONAMIRANDORIGUREL-GUREVICHallregulartrees.Forunimodulargraphsthefollowingsymmetryprincipleholds:MassTransportPrinciple:LetG=(V;E)beaunimodulargraph,andassumeF:VV![0;1]isautomorphisminvariant(i.e.F( v; y)=f(x;y)forany 2Aut(G)),thenforanyv2VwehaveXw2V
Author : conchita-marotz | Published Date : 2015-07-21
4GIDEONAMIRANDORIGURELGUREVICHcallxv0acandidateAcandidatewhichisactuallynon xatingisgoodandtherestofthecandidatesarebadByourapproximationstheprobabilitythatxv0isabadcandidateisboundedbyLetbP
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "2GIDEONAMIRANDORIGUREL-GUREVICHallregula..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
2GIDEONAMIRANDORIGUREL-GUREVICHallregulartrees.Forunimodulargraphsthefollowingsymmetryprincipleholds:MassTransportPrinciple:LetG=(V;E)beaunimodulargraph,andassumeF:VV![0;1]isautomorphisminvariant(i.e.F( v; y)=f(x;y)forany 2Aut(G)),thenforanyv2VwehaveXw2V: Transcript
4GIDEONAMIRANDORIGURELGUREVICHcallxv0acandidateAcandidatewhichisactuallynonxatingisgoodandtherestofthecandidatesarebadByourapproximationstheprobabilitythatxv0isabadcandidateisboundedbyLetbP. MARYAMMIRZAKHANIgrowthof),itprovesfruitfultostudydierenttypesofsimpleclosedgeodesicsonseparately.Letg,nbeaclosedsurfaceofgenusboundarycomponents.ThemappingclassgroupModg,nactsnaturallyonthesetofisoto {z }=x'(' 1(y))| {z }=y=' 1 ' ' 1(x)' 1(y)=' 1(x)' 1(y);whichshowsthat' 12Aut(G).aDefinition.If':G!Hisahomomorphism,thenx2G:'(x)=eH iscalledthekernelof'andisdenotedbyker(').Theorem6.4.Let':G!Hbeah ,andhencealllogicalconsequencesoftheseaxiomsaretrueinN .Butthisproofisnotnitary,becauseitinvolvesaninductiononastatementmentioningtheinnitesetN.Proof:Weprovethecontrapositive.SupposethatPA`G,i.e.PA` distancesaredistinguishedbyAut(G)-orbit.Thatis,d(x;y)=d(u;v)ifandonlyifthereexists2Aut(G)sothatf(x);(y)g=fu;vg.ConsiderthesepointsEuclideanverticesandaddEuclideanedgesasappropriatetoobtainG.Thisisa Algorithm1:Triangle(G=(V;E)) foreachv2Vdo foreachs;t2N(v)do if(s;t)2Ethen return(v;s;t); return\Notriangle"; Proof.ConsiderAlgorithm1.IfGcontainsatriangle(a;b;c),theninsomeiterationofthealgorithm,v=aa Notation Denition SSym( )sharplytransitive:Forany;2 exactlyoneg2Swithg= Denition SSym( )sharply2transitive:Ssharplytransitiveonpairs(1;2),16=2 ObservationbyErnstWitt: Projectiveplaneoford n=1 (z)whichisthe(asymptotic)probabilityinthetail.Instead,supposeweseekthefollowingprobabilityPr Xn+=??,whereisxed.Doesthecentrallimittheoremsayanythinguseful?Itiseasytoseethat,foranylimn!1P 4GIDEONAMIRANDORIGUREL-GUREVICHFortheoriginalARWmodel,corollary1.2wasprovedindependentlybyShellef[5],usingcompletelydierentmethods,onanyboundeddegreegraph.Themainmeritofourproofisthatalthoughthegraph 2(j+k 1)(j+k 2)+j:Thisexamplegeneralizesto:NN:::NN;forany(nite)numberoffactorsinthecartesianproductontheleft.Thisfollowsfromthenextexample.Ex.3.LetA;B;C;Dbesets.IfACandBD,thenABCD.Proof.Byde 4S.CAENEPEEL,J.VERCRUYSSE,ANDSHUANHONGWANGleftA-module,thenCisre exive.Forany'2(C),wethenhavethat'=i(Pj'(fj)cj).GaloiscoringsandDescentTheory.LetCbeanA-coring.Recallthatx2CiscalledgrouplikeifC(x)=x Figure1:S-moveandA-movef\r1;\r2g|f\r1;\r3g|f\r3;\r4g|f\r4;\r5g|f\r4;\r6g|f\r2;\r6gwhereallcurves\r1;:::;\r6lieinacommonsubsurfaceoftype1;2,\r1|\r4and\r2|\r4beingS-movesandallothermovesbeingA-moves,co 2HUYIHUANDANNATALITSKAYAbecausethespaceweworkwithisfourdimensional.Second,thetechniquetoremovethesecondzeroLyapunovexponentismoredelicate.WhilewechangethelastLyapunovexponent,weneedtokeepallotherexpon 3SpecialthankstoBillZameforhisinvaluablehelponTheorem1ofthispaperWewouldalsoliketothankPeterEsoIanJewittMegMeyerAdrienVigierJoelShapiroInaTanevaandPeytonYoungfortheircommentsandadviceyDepartmentofEcon CorinnaCortesGoogleResearchNewYorkNY10011corinnagooglecomYishayMansourTel-AvivUniversityTel-Aviv69978IsraelmansourtauacilMehryarMohriCourantInstituteandGoogleNewYorkNY10012mohricimsnyueduAbstractThisp
Download Document
Here is the link to download the presentation.
"2GIDEONAMIRANDORIGUREL-GUREVICHallregulartrees.Forunimodulargraphsthefollowingsymmetryprincipleholds:MassTransportPrinciple:LetG=(V;E)beaunimodulargraph,andassumeF:VV![0;1]isautomorphisminvariant(i.e.F(
v;
y)=f(x;y)forany
2Aut(G)),thenforanyv2VwehaveXw2V"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents