/
Mahdi Kamaee and Jennifer van Wijngaarden Mahdi Kamaee and Jennifer van Wijngaarden

Mahdi Kamaee and Jennifer van Wijngaarden - PowerPoint Presentation

conchita-marotz
conchita-marotz . @conchita-marotz
Follow
367 views
Uploaded On 2016-02-25

Mahdi Kamaee and Jennifer van Wijngaarden - PPT Presentation

Department of Chemistry University of Manitoba Microwave Spectra and Molecular Geometries of Benzonitrile and Pentafluorobenzonitrile 1 2 2 Fluorine substituted benzonitriles trifluoro ID: 230599

constants 120 geometry 119 120 constants 119 geometry sample pfbn ghz

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Mahdi Kamaee and Jennifer van Wijngaarde..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Mahdi Kamaee and Jennifer van WijngaardenDepartment of Chemistry, University of Manitoba

Microwave Spectra and Molecular Geometries of Benzonitrile and Pentafluorobenzonitrile

1Slide2

2

2

Fluorine substituted

benzonitriles

trifluoro

difluoro

monofluoro

perfluoroSlide3

3

Geometry trends in the ring backbone

At site of fluorination:

C-C bonds shorten 0.005 – 0.008 Å

Ring angle increases by >2

o

Neighbour

vs

non-neighbour substituents

neighbour

: shared bond shortens ~0.010

Å

No large angle changes

n

on-neighbour

:

similar to single F case

All C-C bonds shorten 0.003 – 0.009 Å

Ring angle at C1 decreases by ~2

o

MP2/6-311G++(2d,2p)Slide4

4

Geometry trends near CN substituent

MP2/6-311G++(2d,2p)Slide5

Extensive MW studies (3-160 GHz)G. Erlandsson

, J. Chem. Phys. 22, 1152 (1954).14N hfsDreizler and coworkers, Z. Naturforsch

.

26a, 1124 (1981); 43a, 283 (1988).

Dipole momentK. Wolfhart et al.,

J. Mol.

Spectrosc

.

247

, 119 (2008).

13

C isotopologuesBak

et al., J. Chem. Phys., 37, 2027 (1962).

Dreizler and coworkers, Ber. Bunsenges. Phys. Chem.

98, 970 (1994).5

Benzonitrile: Previous work

µ

a

=4.5152(68) DSlide6

6

MW study (18-26 GHz)

Sharma and

Doraiswamy

, Proc. Ind. Acad. Sci.

67a

, 12 (1968).

14

N

hfs

(7-13 GHz)

Krüger and Dreizler, Z.

Naturforsch. 47a, 865 (1992).

No isotopic studiesPerfluorobenzonitrile: Previous work

µa

=2.79 DMP2/6-311G++(2d,2p)Slide7

7

Balle-Flygare FTMW instrument

4-26 GHz

FWHM ~7kHz

Useful for:

14

N

hfs

resolved

13

C in natural abundance

Sample prep:

1-2

atm

of Ne/Ar bubbled through liquid sampleSupersonic jetSlide8

8

Sample FTMW spectrum of PFBN14N hyperfine structureSlide9

9

Chirped pulse FTMW instrument

8-18

GHz

6 GHz bandwidth

FWHM ~100kHz

Useful for:

Identifying

isotopologue

transitions

Sample prep:

1

atm

of Ne/

Ar bubbled through liquid sampleSupersonic jetSlide10

10

Sample cp-FTMW spectrum of PFBNSlide11

11

 

Parent BN

C1

C2

C3

C4

C5

Rotational Constants /MHz

A

5655.264(5)

5655.496(4)

5563.914(4)

5565.666(4)

5655.453(5)

5655.237(3)

B

1546.8758(10)

1545.55191(6)

1546.80335(5)

1535.71300(5)

1523.65521(6)

1528.64085(6)

C

1214.40407(9)

1213.60148(6)

1210.08975(4)

1203.37301(4)

1200.05798(6)

1203.13679(4)

Centrifugal Distortion Constants /kHz

 

Δ

J

0.0450(4)

0.0450

0.0450

0.0450

0.0450

0.0450

Δ

JK

0.9373(19)

0.9373

0.9373

0.9373

0.9373

0.9373

Δ

K

-0.5(18)

-0.5

-0.5

-0.5

-0.5

-0.5

δ

J

0.0112(3)

0.01122

0.01122

0.01122

0.01122

0.01122

δ

K

0.59(4)

0.59

0.59

0.54

0.59

0.59

14

N Nuclear

Quadrupole

Coupling Constants /MHz

1.5

χ

aa

-6.3560(8)

-6.344(9)

-6.367(8)-6.366(8)-6.348(15)-6.359(16)0.25(χbb-χcc)0.0848(3)0.073(6)0.070(5)0.068(5)0.074(5)0.076(2)rms /kHz0.951.21.11.11.01.1no. lines1775163634239

BN Spectroscopic constants

Pickett’s SPFIT program, Watson A-reduction,

I

r

representation

CD constants fixed to those of parent speciesSlide12

12

C1C21.381(6)1.390(4)

1.392(3)

1.401

C2

C3

1.415(12)

1.381(5)

1.376(4)

1.393

C3

C4

1.396(1)

1.404(2)

1.395(2)1.396

C1C5

1.450(3)1.455(6)

1.443(5)

1.435(C1

C2C3)

118.1(5)119.4(4)

119.5(3)119.5

(C2C3

C4)

120.2(1)

119.8(6)120.0(4)

120.1

(C3

C4

C3)

120.1(1)

120.2(6)

120.1(2)

120.2

(

C2

C1

C2)

123.3(6)

121.5(6)

120.8(5)

120.5

r

s

r

o

r

e

SE

r

e

BN Geometry

r

s

,

r

o

and

r

e

SE

geometries calculated using KRA and STRFIT programs

(http://info.ifpan.edu.pl/~kisiel/prospe.htm)

r

o

geometry using B and C constants

only

r

e

SE

:

rovibrational corrections were calculated at B3LYP/6-31G(d,p)re were calculated at MP2/6-311G++(2d,2p)Slide13

13

PFBN Spectroscopic constants 

Parent PFBN

C1

C2

C3

C4

C5

Rotational Constants /MHz

A

1029.36864(3)

1029.4002(3)

1026.38600(17)

1026.3606(2)

1029.4046(3)

1029.3699(4)

B

764.595288(9)

762.9252(2)

764.32975(6)

763.68959(11)

761.7224(2)

756.6354(2)

C

438.721848(6)

438.17764(10)

438.092216(9)

437.877115(9)

437.781210(10)

436.089680(11)

Centrifugal Distortion Constants /kHz

 

Δ

J

0.006169(18)

0.006169

0.006169

0.006169

0.006169

0.006169

Δ

JK

0.04498(7)

0.04498

0.04498

0.04498

0.04498

0.04498

Δ

K

-0.0284(3)

-0.0284

-0.0284

-0.0284

-0.0284

-0.0284

δ

J

0.00237(10)

0.00237

0.00237

0.00237

0.00237

0.00237

δ

K

0.02955(7)

0.02955

0.02955

0.02955

0.02955

0.02955

14

N Nuclear Quadrupole Coupling Constants /MHz

1.5

χ

aa

-6.5807(12)

-6.58(4)

-6.574(19)

-6.58(2)

-6.59(4)-6.63(4)0.25(χbb-χcc)0.1080(7)0.105(3)0.111(3)0.108(3)0.108(3)0.108(3)rms /kHz0.7871.2031.1791.1671.2011.355no. lines7538199968178

Pickett’s SPFIT program, Watson A-reduction,

I

r

representation

CD constants fixed to those of parent speciesSlide14

14

rsr

o

reSE

r

e

PFBN Geometry

r

o

geometry using A, B and C constants

r

e

SE

:

rovibrational

corrections were calculated at B3LYP/6-31G(

d,p

)

re were calculated at

MP2/6-311G++(2d,2p)

C1C2

1.400(2)

1.394(2)1.389(2)

1.398

C2

C3

1.360(4)

1.373(2)

1.373(3)

1.388

C3

C4

1.391(1)

1.390(1)

1.383(2)

1.392

C1

C5

1.436(1)

1.438(2)

1.430(3)

1.426

(C1

C2

C3)

121.6(2)

121.1(2)

121.1(2)

120.9

(C2

C3

C4)

119.8(1)

119.7(2)

119.6(3)

119.6

(C3

C4

C3)

119.8(1)

120.1(1)

120.3(3)

120.4

(

C2

C1

C2)117.5(2)118.4(2)118.3(2)118.6Slide15

15

Geometry comparison of BN and PFBN

C1

C2

1.392(3)

1.389(2)

-0.003

C2

C3

1.376(4)

1.373(3)

-0.005

C3

C4

1.395(2)1.383(2)

-0.004

C1C5

1.443(5)1.430(3)

-0.009

(C1C2C3)

119.5(3)121.1(2)

+1.4

(C2C3

C4)

120.0(4)119.6(3)

-0.4

(C3

C4

C3)

120.1(2)

120.3(3)

+0.2

(

C2

C1

C2)

120.8(5)

118.3(2)

-1.9

r

e

SE

r

e

SE

r

e

(PFBN-BN)

Ab initio

calculations predict:

All C-C bonds shorten 0.003 – 0.009 Å

Ring angle at C1 decreases by ~2

oSlide16

16

Geometry comparison with benzeneSlide17

17

Monofluorinated BN

μ

b

μ

μ

a

μ

b

μ

μ

a

µ

a

=5.44 D

µ

b

=0.64 D

(calc.)

µ

a

=3.29 D

µb=2.38 D

(calc.)Slide18

18

Acknowledgements

Mahdi Kamaee

Dr. Ming Sun

Questions???

vanwijng@cc.umanitoba.ca

I’m looking for a PDF in MW or IR spectroscopy. Contact me for info.