/
Topic EnergyPowerSpectraandCorrelation In Lecture  we reviewed the notion of average signal Topic EnergyPowerSpectraandCorrelation In Lecture  we reviewed the notion of average signal

Topic EnergyPowerSpectraandCorrelation In Lecture we reviewed the notion of average signal - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
522 views
Uploaded On 2015-01-15

Topic EnergyPowerSpectraandCorrelation In Lecture we reviewed the notion of average signal - PPT Presentation

In this lecture we want to revisit power for the continuous time domain with a view to expressing it in terms of the frequency spectrum First though we should review the derivation of average power using the complex Fourier series 51 Review of Discr ID: 31507

this lecture

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Topic EnergyPowerSpectraandCorrelation I..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

5/25.1.1AquickcheckItisworthcheckingthisusingtherelationshipsfoundinLecture1:Cm=8:1 2(Am�iBm)form�0A0=2form=01 2(Ajmj+iBjmj)form0Forn0thequantitiesarejC0j2=1 2A022jCnj2=21 2(Am�iBm)1 2(Am+iBm)=1 2�A2n+B2ninagreementwiththeexpressioninLecture1.5.2EnergysignalsvsPowersignalsWhenconsideringsignalsinthecontinuoustimedomain,itisnecessarytodis-tinguishbetween\ niteenergysignals",or\energysignals"forshort,and\ nitepowersignals".FirstletusbeabsolutelyclearthatAllsignalsf(t)aresuchthatjf(t)j2isapower.Anenergysignalisonewherethetotalenergyis nite:ETot=Z1�1jf(t)j2dt0ETot1:Itissaidthatf(t)is\squareintegrable".AsETotis nite,dividingbythein nitedurationindicatesthatenergysignalshavezeroaveragepower.Tosummarizebeforeknowingwhatallthesetermsmean:AnEnergysignalf(t)alwayshasaFouriertransformF(!)alwayshasanenergyspectraldensity(ESD)givenbyEff(!)=jF(!)j2alwayshasanautocorrelationRff()=R1�1f(t)f(t+)dtalwayshasanESDwhichistheFToftheautocorrelationRff(),Eff(!)alwayshastotalenergyETot=Rff(0)=1 2R1�1Eff(!)d!alwayshasanESDwhichtransfersasEgg(!)=jH(!)j2Eff(!) 5/4Nowsupposeg(t)=f(t).WeknowthatZ1�1f(t)e�i!tdt=F(!))Z1�1f(t)e+i!tdt=F(!))Z1�1f(t)e�i!tdt=F(�!)Thisis,ofcourse,aquitegeneralresultwhichcouldhavebeenstuckinLecture2,andwhichisworthhighlighting: TheFourierTransformofacomplexconjugateisZ1�1f(t)e�i!tdt=F(�!)Takecarewiththe�!. Backtotheargument.IntheearlierexpressionwehadZ1�1f(t)g(t)dt=1 2Z1�1F(p)G(�p)dp)Z1�1f(t)f(t)dt=1 2Z1�1F(p)F(p)dpNowpisjustanyparameter,soitispossibletotidytheexpressionbyreplacingitwith!.Thenwearriveatthefollowingimportantresult Parseval'sTheorem:ThetotalenergyinasignalisETot=Z1�1jf(t)j2dt=1 2Z1�1jF(!)j2d!=Z1�1jF(!)j2df NB!Thedf=d!=2,andisnothingtodowiththesignalbeingcalledf(t).5.4TheEnergySpectralDensityIftheintegralgivesthetotalenergy,itmustbethatjF(!)j2istheenergyperHz.Thatis: TheENERGYSpectralDensityofasignalf(t),F(!)isde nedasEff(!)=jF(!)j2 5/65.6CorrelationCorrelationisatoolforanalysingwhetherprocessesconsideredrandomaprioriareinfactrelated.Insignalprocessing,cross-correlationRfgisusedtoassesshowsimilartwodi erentsignalsf(t)andg(t)are.Rfgisfoundbymultiplyingonesignal,f(t)say,withtime-shiftedvaluesoftheotherg(t+),thensumminguptheproducts.IntheexampleinFigure5.1thecross-correlationwilllowiftheshift=0,andhighif=2or=5. Figure5.1:Thesignalf(t)wouldhaveahighercross-correlationwithpartsofg(t)thatlooksimilar.Onecanalsoaskhowsimilarasignalistoitself.Self-similarityisdescribedbytheauto-correlationRff,againasumofproductsofthesignalf(t)andacopyofthesignalatashiftedtimef(t+).Anauto-correlationwithahighmagnitudemeansthatthevalueofthesignalf(t)atoneinstantsignalhasastrongbearingonthevalueatthenextinstant.Correlationcanbeusedforbothdeterministicandrandomsignals.WewillexplorerandomprocessesthisinLecture6.Thecross-andauto-correlationscanbederivedforboth niteenergyand nitepowersignals,buttheyhavedi erentdimensions(energyandpowerrespectively)anddi erinothermoresubtleways.Wecontinuebylookingattheauto-andcross-correlationsof niteenergysignals.5.7TheAuto-correlationofa niteenergysignalTheauto-correlationofa niteenergysignalisde nedasfollows.Weshalldealwithrealsignalsf,sothattheconjugatecanbeomitted. 5/7 Theauto-correlationofasignalf(t)of niteenergyisde nedRff()=Z1�1f(t)f(t+)dt=(forrealsignals)Z1�1f(t)f(t+)dtTheresultisanenergy. Therearetwowaysofenvisagingtheprocess,asshowninFigure5.2.Oneistoshiftacopyofthesignalandmultiplyvertically(sotospeak).Forpositivethisisashifttothe\left".Thisismostusefulwhencalculatinganalytically. Figure5.2:g(t)andg(t+)forapositiveshift.5.7.1Basicpropertiesofauto-correlation1.Symmetry.Theauto-correlationfunctionisanevenfunctionof:Rff()=Rff(�):Proof:Substitutep=t+intothede nition,andyouwillgetRff()=Z1�1f(p�)f(p)dp:Butpisjustadummyvariable.ReplaceitbytandyourecovertheexpressionforRff(�).(Infact,insometextsyouwillseetheautocorrelationde nedwithaminussigninfrontofthe.) 5/82.Foranon-zerosignal,Rff(0)�0.Proof:Foranynon-zerosignalthereisatleastoneinstantt1forwhichf(t1)6=0,andf(t1)f(t1)�0.HenceR1�1f(t)f(t)dt�0.3.Thevalueat=0islargest:Rff(0)Rff().Proof:Consideranypairofrealnumbersa1anda2.As(a1�a2)20,weknowthata21+a22a1a2+a2a1.Nowtakethepairsofnumbersatrandomfromthefunctionf(t).Ourresultshowsthatthereisnorearrangement,randomorordered,ofthefunctionvaluesinto(t)thatwouldmakeRf(t)(t)dt�Rf(t)2dt.Using(t)=f(t+)isanorderedrearrangement,andsoforanyZ1�1f(t)2dtZ1�1f(t)f(t+)dt5.8|Applications5.8.1|SynchronisingtoheartbeatsinanECG(DIYsearchandread)5.8.2|ThesearchforExtraTerrestrialIntelligence Figure5.3:ChattyaliensForseveraldecades,theSETIorganizationhavebeenlook-ingforextraterrestrialintelligencebyexaminingtheauto-correlationofsignalsfromradiotelescopes.Oneprojectscanstheskyaroundnearby(200lightyears)sun-likestarschoppingupthebandwidthbetween1-3GHzinto2billionchannelseach1Hzwide.(Itisassumedthatanattempttocommunicatewoulduseasinglefrequency,highlytuned,signal.)Theydeterminetheautocorrelationeachchan-nel'ssignal.Ifthechannelisnoise,onewouldobserveaverylowautocorrelationforallnon-zero.(SeewhitenoiseinLecture6.)Butifthereis,say,arepeatedmessage,onewouldobserveaperiodicriseintheautocorrelation. Figure5.4:Rffat=0isalwayslarge,butwilldroptozeroifthesignalisnoise.Ifthemessagesaligntheautocorrelationwithrise. 5/95.9TheWiener-KhinchinTheoremLetustaketheFouriertransformofthecross-correlationRf(t)g(t+)dt,thenswitchtheorderofintegration,FTZ1�1f(t)g(t+)dt=Z1=�1Z1t=�1f(t)g(t+)dte�i!d=Z1t=�1f(t)Z1=�1g(t+)e�i!ddtNoticethattisaconstantfortheintegrationwrt(that'showf(t) oatedthroughtheintegralsign).Substitutep=t+intoit,andtheintegralsbecomeseparableFTZ1�1f(t)g(t+)dt=Z1t=�1f(t)Z1p=�1g(p)e�i!pe+i!tdpdt=Z1�1f(t)ei!tdtZ1�1g(p)e�i!pdp=F(!)G(!):Ifwespecializethistotheauto-correlation,G(!)getsreplacedbyF(!).Then Fora niteenergysignalTheWiener-KhinchinTheoremasaysthatTheFToftheAuto-CorrelationistheEnergySpectralDensityFT[Rff()]=jF(!)j2=Eff(!) aNorbertWiener(1894-1964)andAleksandrKhinchin(1894-1959) (Thismethodofproofisvalidonlyfor niteenergysignals,andrathertrivializestheWiener-Khinchintheorem.Thefundamentalderivationliesinthetheoryofstochasticprocesses.)5.10CorollaryofWiener-KhinchinThiscorollaryjustcon rmsaresultobtainedearlier.WehavejustshownthatRff(),Eff(!).ThatisRff()=1 2Z1�1Eff!)ei!d!whereisusedbyconvention.Nowset=0 5/115.13|ExampleandApplication[Q]Determinethecross-correlationofthesignalsf(t)andg(t)shown. [A]Startbysketchingg(t+)asfunctionoft. f(t)ismadeofsectionswithf=0,f=t 2a,thenf=0.g(t+)ismadeofg=0,g=t a��2+ a,g=1,theng=0.Theleft-mostnon-zerocon gurationisvalidfor04a+a,sothatFor�4a�3a:Rfg()=Z1�1f(t)g(t+)dt=Z4a+0t 2a1dt=(4a+)2 4aFor�3a�2a:Rfg()=Z1�1f(t)g(t+)dt=Z3a+0t 2at a�2+ adt+Z4a+3a+t 2a1dtFor�2a�a:Rfg()=Z1�1f(t)g(t+)dt=Z3a+2a+t 2at a�2+ adt+Z2a3a+t 2a1dtFor�a0:Rfg()=Z1�1f(t)g(t+)dt=Z2a2a+t 2at a�2+ adtWorkingouttheintegralsand ndingthemaximumisleftasaDIYexercise. 5/12 Figure5.5:5.13.1ApplicationItisobviousenoughthatcross-correlationisusefulfordetectingoccurencesofa\model"signalf(t)inanothersignalg(t).Thisisa2Dexamplewherethemodelsignalf(x;y)isthebackviewofafootballer,andthetestsignalsg(x;y)areimagesfromamatch.Thecrosscorrelationisshowninthemiddle.5.14Cross-EnergySpectralDensityTheWiener-KhinchinTheoremwasactuallyderivedforthecross-correlation.Itsaidthat TheWiener-KhinchinTheoremshowsthat,fora niteenergysignal,theFToftheCross-CorrelationistheCross-EnergySpectralDensityFT[Rfg()]=F(!)G(!)=Efg(!) 5.15FinitePowerSignalsLetususef(t)=sin!0ttomotivatediscussionabout nitepowersignals.Allperiodicsignalsare nitepower,in niteenergy,signals.OnecannotevaluateR1�1jsin!0tj2dt.However,bysketchingthecurveandusingthenotionofself-similarity,onewouldwishthattheauto-correlationispositive,butdecreasing,forsmallbutincreasing;thennegativeasthethecurvesareinanti-phaseanddissimilarinan\organized"way,thenreturntobeingsimilar.Theautocorrelationshouldhavethesameperiodasitsparentfunction,andlargewhen=0|soRffproportionaltocos(!0)wouldseemright.Wede netheautocorrelationasanaveragepower.Notethatforaperiodic 5/13 Figure5.6:functionthelimitoveralltimeisthesameasthevalueoveraperiodT0Rff()=limT!11 2TZT�Tsin(!0t)sin(!0(t+))dt!1 2(T0=2)ZT0=2�T0=2sin(!0t)sin(!0(t+))dt=!0 2Z=!0�=!0sin(!0t)sin(!0(t+))dt=1 2Z�sin(p)sin(p+!0))dp=1 2Z�sin2(p)cos(!0)+sin(p)cos(p)sin(!0)dp=1 2cos(!0)Fora niteenergysignal,theFourierTransformoftheautocorrelationwastheenergyspectraldensity.Whatistheanalogousresultnow?Inthisexample,FT[Rff]= 2[(!+!0)+(!�!0)]Thisisactuallythepowerspectraldensityofsin!0t,denotedSff(!).The-functionsareobviousenough,buttocheckthecoecientletusintegrateoverallfrequencyf:Z1�1Sff(!)df=Z1�1 2[(!+!0)+(!�!0)]df=Z1�1 2[(!+!0)+(!�!0)]d! 2=1 4[1+1]=1 2: 5/14Thisdoesindeedreturntheaveragepowerinasinewave.WecanuseFourierSeriestoconcludethatthisresultsmustalsoholdforanyperiodicfunction.Itisalsoapplicabletoanyin niteenergy\nonsquare-integrable"function.WewilljustifythisalittlemoreinLecture61.To nisho ,weneedonlystatetheanalogiestothe niteenergyformulae,replacingEnergySpectralDensitywithPowerSpectralDensity,andreplacingTotalEnergywithAveragePower. Theautocorrelationofa nitepowersignalisde nedasRff()=limT!11 2TZT�Tf(t)f(t+)dt: TheautocorrelationfunctionandPowerSpectralDensityareaFourierTransformPairRff(),Sff(!) TheaveragepowerisPAve=Rff(0) ThepowerspectrumtransfersacrossasystemasSgg(!)=jH(!)j2Sff(!)Thisresultisprovedinthenextlecture. 5.16Cross-correlationandpowersignalsTwopowersignalscanbecross-correlated,usingasimilarde nition:Rfg()=limT!11 2TZT�Tf(t)g(t+)dtRfg(),Sfg(!)5.17InputandOutputfromasystemOneverylastthought.Ifoneappliesan nitepowersignaltoasystem,itcannotbeconvertedintoa niteenergysignal|orviceversa. 1ToreallynailitwouldrequireustounderstandWiener-Khinchinintoomuchdepth.