/
5.0 Discrete-time Fourier Transform 5.0 Discrete-time Fourier Transform

5.0 Discrete-time Fourier Transform - PowerPoint Presentation

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
502 views
Uploaded On 2016-09-09

5.0 Discrete-time Fourier Transform - PPT Presentation

51 Discretetime Fourier Transform Representation for discretetime signals Chapters 3 4 5 Chap 3 Periodic Fourier Series Chap 4 Aperiodic Fourier Transform Chap 5 Aperiodic ID: 463041

periodic time fourier discrete time periodic discrete fourier text transform frequency domain continuous case duality aperiodic signals unified period

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "5.0 Discrete-time Fourier Transform" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

5.0 Discrete-time Fourier Transform

5.1 Discrete-time Fourier Transform Representation for discrete-time signals

Chapters 3, 4, 5

Chap 3 PeriodicFourier SeriesChap 4 Aperiodic Fourier Transform Chap 5 Aperiodic Fourier Transform

Continuous

 

 

 

Discrete

 Slide2

Fourier

Transform (p.3 of 4.0)

T FS

  0 

 periodic in  discrete in

 

 

 

 aperiodic in   

continuous in

  

 

T

 

 

 

 

 Slide3

Discrete-time Fourier Transform

periodic in

 

aperiodic in  

discrete and periodic in  

continuous and periodic in

 

N variables

variables 

N dim

dim

 

 

 

 

(1,0)

 

 

 

 

 

 

 

 

 

012

0

 

 

 

 

 

 

 

 

 

 

 

 

 Slide4

Harmonically Related Exponentials for Periodic Signals

All with period

T: integer multiples of ω0

Discrete in frequency domainT

 

 

 

 

 

 

 

 

periodic

, fundamental

period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(p.11 of 3.0)Slide5
Slide6
Slide7
Slide8

From Periodic to Aperiodic

Considering x[n], x[n]=0 for n > N

2 or n < -N1

ConstructSlide9

Fourier series for

From Periodic to AperiodicConsidering x[n], x[n]=0 for n >

N2 or n < -N1

Defining envelope of Slide10

As

signal, time domain, Inverse Discrete-time Fourier Transform

spectrum, frequency domain Discrete-time Fourier Transform

Similar format to all Fourier analysis representations previously discussedSlide11

spectrum, frequency domain

Fourier Transform

signal, time domain Inverse Fourier Transform

Fourier Transform pair, different expressions

very similar format to Fourier Series for periodic signals

(p.10 of 4.0)Slide12

Integration over 2

 onlyFrequency domain spectrum is continuous and periodic, while time domain signal is discrete-time and aperiodicFrequencies around ω=0 or 2 are low-frequencies, while those around ω=  are high-frequencies, etc.

Note: X(ejω) is continuous and periodic with period 2

See Fig. 5.3, p.362 of text For Examples see Fig. 5.5, 5.6, p.364, 365 of textSlide13
Slide14
Slide15
Slide16
Slide17

From Periodic to Aperiodic

Convergence Issuegiven x[n]No convergence issue since the integration is over an finite intervalNo Gibbs phenomenon

See Fig. 5.7, p.368 of textSlide18
Slide19
Slide20
Slide21

Rectangular/Sinc

 

 0

    0

  

 

 Slide22

Fourier Transform for Periodic Signals –

Unified Framework (p.16 of 4.0)Given x(t)

(easy in one way)Slide23

Unified

Framework: Fourier Transform for Periodic Signals (p.17 of 4.0)

FS   

  

 

 

 

  

 

 

 

 

 

If

FSlide24

From Periodic to Aperiodic

For Periodic Signals – Unified FrameworkGiven x[n]

See Fig. 5.8, p.369 of textSlide25
Slide26

From Periodic to Aperiodic

For Periodic Signals – Unified FrameworkIf

See Fig. 5.9, p.370 of textSlide27
Slide28

Signal Representation in Two Domains

Time Domain Frequency Domain

 

   

 

 

 

 

  

 

 

 

, k: integer,

 

 

 

 

 

 

 

 Slide29

5.2 Properties of Discrete-time Fourier

Transform

Periodicity

LinearitySlide30

Time/Frequency Shift

ConjugationSlide31
Slide32

Differencing/Accumulation

Time ReversalSlide33

Differentiation

(p.35 of 4.0)

Enhancing higher frequenciesDe-emphasizing lower frequencies

Deleting DC term ( =0 for ω=0)  

 

 

 Slide34

Integration

(p.36 of 4.0)

Accumulation

Enhancing lower frequencies (accumulation effect)De-emphasizing higher frequencies (smoothing effect)Undefined for ω=0

dc term

 

 

 

 

 Slide35

Differencing/Accumulation

Enhancing higher frequencies

De-emphasizing lower freqDeleting DC term

Differencing/Accumulation

Accumulation

Differencing

 

1

 

 

 

 

 

 

 

 

 

 

 Slide36

Time Reversal

the effect of sign change for

x

(t) and ak are identicalunique representation for orthogonal basis

 

 

(p.29 of 3.0)Slide37

Time Expansion

If n/k is an integer, k: positive integer

See Fig. 5.14, p.378 of text

See Fig. 5.13, p.377 of textSlide38
Slide39
Slide40

Time Expansion

  -1 01 2-3 0 3 6

 1

 

 

 

 1

 

 Slide41

Time Expansion

 

 

 

 -1 0 1 2-3 0 3 6

Discrete-time

Continuous-time

 

 

 

(chap4)

 

 

(chap5)

 

 

, k=integer

 

?

 

 

-1 0 1 2

-3 0 3 6Slide42

Differentiation in Frequency

Parseval’s RelationSlide43

Convolution Property

Multiplication Property

frequency response or transfer function

periodic convolutionSlide44

Input/Output Relationship

 

 

Time DomainFrequency Domain

 

 

00 

 

  

 

 

 

 

 

 

(

P.55

of

4.0

)Slide45

Convolution Property

Transfer Function

Frequency Response

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

p.57

of 4.0)

 Slide46

System Characterization

Tables of Properties and Pairs

See Table 5.1, 5.2, p.391, 392 of textSlide47
Slide48
Slide49

Vector Space Interpretation

basis signal sets

{x[n], aperiodic defined on -∞ < n < ∞}=V is a vector space

repeats itself for very 2

Slide50

Generalized

Parseval’s Relation

inner-product can be evaluated in either domain

Vector Space Interpretation{X(ejω), with period 2π defined on -∞ < ω < ∞}=

V : a vector spaceSlide51

Orthogonal Bases

Vector Space InterpretationSlide52

Orthogonal Bases

Similar to the case of continuous-time Fourier transform. Orthogonal bases but not normalized, while makes sense with operational definition.

Vector Space InterpretationSlide53

Summary and Duality

(p.1 of 5.0)

Chap 3 PeriodicFourier SeriesChap 4 Aperiodic Fourier Transform

Chap 5 Aperiodic Fourier Transform Continuous <C>

 <A>

 

<D>

 

Discrete <B>

 Slide54

5.3 Summary and Duality

<A> Fourier Transform for Continuous-time Aperiodic Signals

(Synthesis) (4.8)

(Analysis) (4.9)-x(t) : continuous-time aperiodic in time(∆t→0) (T→∞)

-X(jω) : continuous in aperiodic infrequency(ω0→0) frequency(W→∞)

Duality<A> : Slide55

 

 

  

   

  

00

 

 

Case <A> (

p.44 of 4.0)

 0

 

 

 Slide56

<B> Fourier Series for Discrete-time Periodic Signals

(Synthesis) (3.94)

(Analysis) (3.95)-x[

n] : discrete-time periodic in time(∆t = 1) (T = N)-ak : discrete in periodic infrequency(ω0 = 2 / N) frequency(W = 2

)

Duality<B> : Slide57

Case <B> Duality

 

 

   

  

 

  

 

  

 

 

 

 

 

 Slide58

<C> Fourier Series for Continuous-time Periodic Signals

(Synthesis) (3.38)

(Analysis) (3.39)-x(

t) : continuous-time periodic in time(∆t → 0) (T = T)-ak : discrete in aperiodic infrequency(ω0 = 2 / T) frequency(W

→ ∞)Slide59

Case <C> <D> Duality

<C>

<D> 

   

  

 

 0

 

  

 

 

 

 

 

 

 

 

 

0

 

 

 

0 1 2 3

For <C>

For <D>

Duality Slide60

<D> Discrete-time Fourier Transform for Discrete-time

Aperiodic Signals

(Synthesis) (5.8)(Analysis) (5.9)-x

[n] : discrete-time aperiodic in time(∆t = 1) (T→∞)-X(ejω) : continuous in periodic infrequency(ω0→0) frequency(W = 2)Slide61

Duality<C

> / <D>

For <C>For <D>Duality

taking

z

(t) as a periodic signal in time with period 2

, substituting into (3.38), ω0 = 1which is of exactly the same form of (5.9) except for a sign change, (3.39) indicates how the coefficients ak are obtained, which is of exactly the same form of (5.8) except for a sign change, etc.

See Table 5.3, p.396 of textSlide62

 Slide63

More Duality

Discrete in one domain with

∆ between two values→ periodic in the other domain with period Continuous in one domain (∆ → 0)→ aperiodic in the other domain

  Slide64

Harmonically Related Exponentials for Periodic Signals

All with period

T: integer multiples of ω0

Discrete in frequency domainT

 

 

 

 

 

 

 

 

periodic

, fundamental

period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(P.11 of 3.0)Slide65

Extra Properties Derived from Duality

examples for Duality <B>

duality

dualitySlide66

Unified Framework

Fourier Transform : case <A>

(4.8)(4.9)Slide67

Unified Framework

Discrete frequency components for signals periodic in time domain: case <C>

you get (3.38)

(applied on (4.8))Case <C> is a special case of Case <A>Slide68

Unified

Framework: Fourier Transform for Periodic Signals (p.17 of 4.0)

FS  

   

 

 

 

  

 

 

 

 

 

If

FSlide69

Unified Framework

Discrete time values with spectra periodic in frequency domain: case <D>

(4.9) becomesNote : ω in rad/sec for continuous-time but in rad for

discrete-time(5.9)

Case <D> is a special case of Case <A>Slide70

Time

Expansion (p.41 of 5.0)

 

 

  -1 0 1 2-3 0 3 6

Discrete-time

Continuous-time

 

 

 

(chap4)

 

(chap5)

 

 

, k=integer

 

?

 

 

-1 0 1 2

-3 0 3 6

 Slide71

Unified Framework

Both discrete/periodic in time/frequency domain: case <B> -- case <C> plus case <D>

periodic and discrete, summation over a period of N

(4.8) becomes (4.9) becomes

(3.94) (3.95) Slide72

Unified Framework

Cases <B> <C> <D> are special cases of case <A>Dualities <B>, <C>/<D> are special case of Duality <A>Vector Space Interpretation----similarly unifiedSlide73

Summary and Duality

(p.1 of 5.0)

Chap 3 PeriodicFourier SeriesChap 4 Aperiodic Fourier Transform

Chap 5 Aperiodic Fourier Transform Continuous <C>

 <A>

 

<D>

 

Discrete <B>

 Slide74

Examples

Example 5.6, p.371 of textSlide75

Examples

Example 4.8, p.299 of text

(

P.76 of 4.0)Discrete PeriodicPeriodic

Discrete 

 

 Slide76

Examples

Example 5.11, p.383 of text

 

time shift propertySlide77

Examples

Example 5.14, p.387 of textSlide78
Slide79
Slide80

Examples

Example 5.17, p.395 of textSlide81

Examples

Example 3.5, p.193 of text

(a)

(b)(c)

(P. 58 of 3.0)Slide82

Rectangular/

Sinc

(p.21 of 5.0)Slide83

Problem 5.36(c)

, p.411 of textSlide84

Problem

5.43, p.413 of textSlide85

Problem 5.46

, p.415 of textSlide86

Problem 5.56

, p.422 of textSlide87

Problem 3.70

, p.281 of text2-dimensional signals

 

    

 

 

 

 

(P.

65

of 3.0)Slide88

Problem 3.70

, p.281 of text2-dimensional signals

 

    

 

 

 

 

 

 

 

 

 

 

 

 

different

 

 

 

 

(P.

64

of 3.0)Slide89

An Example across Cases <A><B><C><D>

<A>

(4.34)<D>

(5.45)<C> (Sec. 3.5.4) , (Table 3.1)<B>

(Table 3.2) Slide90

Time/Frequency

Scaling (p.38 of 4.0)

See Fig. 4.11, p.296 of text

(time reversal) 

  

 

  

 

 

 

  

 

 

 

 Slide91

 

 

 

    

 

 

  

 

 

 

 

 

Single Frequency

(

p.40

of 4.0)Slide92

Parseval’s

Relation (p.37 of 4.0)

total energy: energy per unit time integrated over the timetotal energy: energy per unit frequency integrated over the frequency

 

 Slide93

Single Frequency

<A>

(4.34) 

 

 

 

 

 Slide94

Another Example

See Figure 4.14 (example 4.8), p.300 of text

  

    

 1 

 

  

 

   

 

 

 

 

 

 

 Slide95

Cases <C><D>

<C>

<D>  

  : any real number 

  

 

 

,

 

: positive integer only

  

 

 

 

 

 

 

Duality

 

 

 Slide96

Cases <B>