/
w w a w wp a  wip w a Ap A wip w w w a w wp a  wip w a Ap A wip w

w w a w wp a wip w a Ap A wip w - PDF document

edolie
edolie . @edolie
Follow
342 views
Uploaded On 2021-06-30

w w a w wp a wip w a Ap A wip w - PPT Presentation

Aa a by pp a 2 A Ap xx A Ap x Ax0000 nco k Ap Ap 0 a a p A Let xy x complex numbers Then implies P and imply x and imply x ID: 849849

integer x0000 inf convex x0000 integer convex inf matrix normable exists finite xp000 convexity paranormed theorem column sequence linear

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "w w a w wp a wip w a Ap A wip w" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 w w a w w(p) a w^ip) w a [A,p] [A w^ip)
w w a w w(p) a w^ip) w a [A,p] [A w^ip) w A=(a a by p=(p a 2 A [A.p]^ x=(x A [A,p] x A� (n-co). k [A,p]^ [A,p] = 0 a a p A . Let x,y, \x complex numbers. Then implies P^\ and imply \x\ and imply \x\»\\ log l/Tr+r/p^l. 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH A a a first a [A.p]^. H=supp k [A^p]^ g(x) = sup(A n H). Let [A^p]^ be aparanormed space, let and suppose that there exists an integer� N 1 such

2 that J n s{n) where Then [A^p]^ is r-
that J n s{n) where Then [A^p]^ is r-convex. U(d) . U(d)a 6. k q U = Jx e [A, p]„ : £ (a U = x [A, (a d\, U(d)=U n U ifx U(d) q q U\p\ Xx+fiy e U U(d) 6. S(R) 6� R0,x G [A^p]^ g(x) 0&#xl,00;U(d)=S(d U(d) a a� d=d(e)0 U(d)() t(n) k e s(n) p t(n) a finite n. t(n).p 2� 2 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH H' = N(n) n x e U(d) d g(x)A oyevp over rj2 xp i i x 2a 2 � n\. q r/2 1&#xp00

3 0;N 1&#xp000; nl,^ N) 2 (a 2 N'*. 3 3
0;N 1&#xp000; nl,^ N) 2 (a 2 N'*. 3 3 R a r/2 £ 3 a aN. 2 3 d(2+H'+NlogN)() 1 1/M, that g(x) x e U(d). r\ a n k.p k, [A,p] € £ [A, p]^ a finding a [A.p]^. a A, a a B ab b (r) If [A.p]^ is r-convexfor some and there is a positive constant a such that for each n and each k such that and we have then [B, [B,p]. 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH x e [B,� H\ WV2n h fc= [A.p]^ U� d0 S(d) U^S(l). e 1

4 fcth 0 k e [A^p]^ = ld S(d) U.&#x^000;
fcth 0 k e [A^p]^ = ld S(d) U.&#x^000; m 1 2finite k b 2 \x U, 2 G 2 x e Let B=(b be any matrix of noughts and ones, p be any strictly positive sequence and If B is column finite and [B, [B there exists an integer such that of Theorem 1 holds, where s(ri)={k:b € [B, [B^p]^ n, N=N(ri) 2 1�n(l)l 2 ^ 2 2" k e s(m). ir a 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH � N 1 () U) !**'* N (DIN** � NN Bb�

5 nn{2) \\) (n(2)) f Nl* � k(2)k
nn{2) \\) (n(2)) f Nl* � k(2)k(l) k(2) 2 Nl* (N (n(i)), (k(i)) U)2W*£1, l() N&#xni00; N b 0 1 k k(f), k(i+l) 2 x es(n(i+l)) i=0, ,� nl. n(i)() fc(f—l)(࿀,;kk(i+l). x, 2 2 1 2 (n(i+i)) 2 2 2 x, 3 3 2kKkM xe[B,(r)]„. x $ [B,p]^. w^ip). 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH Suppose that A is a column finite matrix which satisfies thecondition of Theorem 2. Let Then the following conditions a

6 re equivalent: is r-convex. [B, where
re equivalent: is r-convex. [B, where 0\ and a and b otherwise. There exists an integer� N 1 such that J N n s(n) where s(n) = {k:Q andp and 3 1 m(p)={x:sup \x is l-convex if and only if 0s\xpp 2 4 A w^(p): = = = ^ a k 2� n0. w^ip)c \ c D=(d d&#xn000; n\ rf C D w^ip)- w [D,p]^ n J The following statements are equivalent: w r-convex. ^ [B,/?]«,, ft 2 otherwise. and there is an integer� N1 such that 2 N* n s(n) where s(n)={k:2 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXE

7 MHFWWRWKH&DPEULGJ
MHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH g aw^ip). 2 0 a X w^(p) 4 A = D. 5 1 [A^p]^ w^(p) C p k=2\ i=Q, . . p k^l*. s(n) C {k:l k=2 s(2 N 5 N=2, [B, [B,p]^ [A.p]^ A = C,[B, £ a1� (kl) a[A,p] [B,p] 2 p 7T k=2\ 3 w w^(p) The inclusion not necessary for the r-convexity p k=2* p w^ip) 2 w^ip)^ w^r) = k 2 [A^p]^ [A,p] [A, p]^ 4 [A,p] w w supp 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIX

8 VH a Let and T={k\k e S and aLet [
VH a Let and T={k\k e S and aLet [A.p]^ {respectively [A,p] be paranormed. Then it is locally bounded if and only if inf (respectively [A,p]^. a=inf S(l) 6 1 a 6. N 0. a S(d)^N. X� \X\\ \À\~ sup x e S(\) \1/M 2a ! xjXe S(l)^XN, a [A^p]^ a B 0� d0 S(d) B a X XS(d) k e S x S(d) Id^suvaS^'e^. V a inf T S x e [A,p] n, 2 \x = 2 a T e [A,p] a� (n-co). c and m(p) are normable if and only if 0 €(p) is normable if and only if p w and w^{p) are normable if and only if and where otherwise. 7 Linear functionals with Note on strong summability, 'RZQORDGHGIURP KWWSV

9 ZZZFDPEULGJHRUJF
ZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRIXVH Matrix between some classes sequences, Spaces of summable On Kuttnefs Paranormed generated by infinite matrices, Some properties sequence 1 Maddox Absolute convexity in topological linear The £(p) and m(p), 'RZQORDGHGIURP KWWSVZZZFDPEULGJHRUJFRUH  -XQDW VXEMHFWWRWKH&DPEULGJH&RUHWHUPVRI

Related Contents


Next Show more