/
Heating Heating

Heating - PowerPoint Presentation

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
393 views
Uploaded On 2016-03-09

Heating - PPT Presentation

and Cooling 1 Coordinator Karel Kabele kabelefsvcvutcz CTU in Prague   Contributors Eric Willems Erwin Roijen Peter Op t Veld POpTVeldchrinl Camilla Brunsgaard ID: 248345

temperature heating wall heat heating temperature heat wall radiant cooling radiator surface underfloor system structure kabele pipes radiators thermal

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Heating" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Heating and Cooling

1Slide2

Coordinator:

Karel Kabele,

kabele@fsv.cvut.cz, CTU in Prague Contributors:Eric Willems, Erwin Roijen, Peter Op 't Veld, P.OpTVeld@chri.nlCamilla Brunsgaard, cbru@create.aau.dk & Mary-Ann Knudstrup, mak@create.aau.dk, Aalborg University, Per Kvols Heiselberg, ph@civil.aau.dk, Tine S. Larsen, Olena K. Larsen, Rasmus Lund Jensen (AAU)Arturas Kaklauskas, Arturas.kaklauskas@st.vgtu.lt, Audrius Banaitis, Audrius.banaitis@vgtu.lt , Vilnius Geniminas Technical University (VGTU) Marco Perino, marco.perino@polito.it, Gianvi Fracastoro, Stefano Corgnati, Valentina Serra (POLITO)Werner Stutterecker, werner.stutterecker@fh-burgenland.at, (FH-B)Mattheos Santamouris, msantam@phys.uoa.gr, Margarita Asimakopoulos, Marina Laskari, marlaskari@googlemail.com, (NKUA)Zoltan Magyar, zmagyar@invitel.hu, Mihaly Baumann,  Aniko Vigh, idesedu.pte@gmail.com (PTE)Manuela Almeida, malmeida@civil.uminho.pt, Sandra Silva, sms@civil.uminho.pt , Ricardo Mateus, ricardomateus@civil.uminho.pt, University of Minho (UMINHO) Piotr Bartkiewicz, piotr.bartkiewicz@is.pw.edu.pl, Piotr Narowski, piotr.narowski@is.pw.edu.pl (WUT)Matthias Haase, matthias.Haase@sintef.no, (NTNU)Karel Kabele, kabele@fsv.cvut.cz, Pavla Dvořáková, pavla.dvorakova@fsv.cvut.cz, (CTU – FCE)

2Slide3

LECTURE 3

Active

Space heating and cooling3Slide4

Heat emitters (radiators, convectors, tubular, radiant heating (stripes, panels), dark and light infrared radiant pipes, stoves).

4Slide5

Heating equipment

Heat source - heat transfer medium - heat emitter

Classification of the systemslocalfloorcentraldistrict5Slide6

Heat emitters

6Slide7

Convectors

7

NaturalFan-convectorsFloorWall                  Slide8

Radiators

8Slide9

9

Control limits

Panel radiatorPSteel radiatorS

today

Heat insulation (old buildings)

Heat insulation standard 1995 (new buildings)

Heat insulation Standard 2000

Water content

radiator

Large mass

= heating unresponsive

low mass = responsive heating

G

radiator G

Mass = storage

Responsive heating

c

ontrol important

t

o make use of

s

olar

gainsSlide10

10

* radiator

temperature, 200C room temperatureRadiation share

Convection share

Single panel radiator, without convector

Radiator (modular

)

Double panel radiator, with three convectors

Finned tube convector

Thermal outputSlide11

Off-peak storage

Static

DynamicConvectorRadiator 11Slide12

12

Air flow patterns

prof.Ing.Karel Kabele,CSc.Slide13

Radiant panels

Low temperature

heaters max 110 °C (water, steam, el.power)High temperature dark - about 350°C - radiant tube heating system (gas)light - about 800 °C - flameless surface gas combustion13Slide14

Heat emitters

Design principles

Heating outputLocationCovering - furnitureConnection to the pipe systemType14Slide15

Heat

emitters designCovering = changes in the output15100%87%

110%

95%

100%

100%

90%

85%

Connection to the piping systemSlide16

SPACE HEATING AND COOLING

16Slide17

Low-temperature radiant heating

High-temperature radiant cooling

Underfloor, wall and/or ceiling heating/coolingEmbeded surfacesTABSSnowmelt systems17Slide18

18

Low - temperature radiant heating

floor, wall and/or ceiling with embedded pipes or el.wires in concrete slabTemperature distribution125BEE1_2008/2009prof.Ing.Karel Kabele,CSc.

Ideal temperature

Radiators

Underfloor heating

Ideal temperature

Underfloor heating

RadiatorsSlide19

R

adiant heating

/coolingOutput Limited surface temperature limited output cca 100 W.m-2 Energy savings Lower air temperature lower heat lossesControlLow temperature difference autocontrol effect19Slide20

Underfloor heating

History20Slide21

Low

/high

- temperature radiant heating/coolingFloor structure21Insulating strip between wall and flooringFinished flooring

Concrete slab min 65mm

Thermal insulation

20-80mm

Pipes

Humidity seal

Reinforcement

Supporting floor structureSlide22

Underfloor heating - structure

22

TYP A

TYP B

TYP CSlide23

Low - temperature

radiant heating

Technical solutionPipe layout23Slide24

Underfloor heating - examples

24Slide25

Wall

heating

Embedded pipes - inner wall sideHigher surface temperature on both sidesFurniture layout Rooms with given use of space: swimming pools, entrance areas, corridors not possible or desirable to use conventional heating surfaces: prisons, hospitals,…Possibility to use the system for cooling 25Slide26

Wall heating

- Design

processdetermination of the areas, applicable to this type of heating;determine the desired maximum surface temperature;calculate the heat loss room analogy for underfloor heating without losing the wall with wall heating;verification of the achievable performance of surfaces and temperaturecompared to heat loss, or draft supplementary heating surfaces.select the type of wall heating, wet or dry system, pipe or capillaries;design spacing and temperature parameters of heat transfer fluid;hydraulic calculation.26Slide27

Wall

heating

- temperaturesFrom the point of thermal comfort it is like radiators heatingMaximum surface temperature 35 - 50 °C according to local conditions.For surface temperatures above 42 ° C can be painful contact.size of losses to the outside, impact on the neighboring roomSome manufacturers recommend and design system for the surface temperature of 35 ° C27Slide28

Technical

solutionA – pipes diameter 10-14 mmWetDryB – capillary mats Pipes diameter 6 mm , rozteč 30-50 mmWet28Slide29

With or without phase change material

Cooling capacity can limit the use of system

Control of room conditions? Thermally Activated Building Structures (TABS)29Slide30

Thermal

activation of building structure (TABS)- National technical library (Prague)30foto: Václav Nývlt, Technet.czSlide31

Special

case

HEATING OF THE BASEMENT OF  ICE SURFACE31Slide32

Realization

32Slide33

„Floor“

 

structureIce 50 mmConcrete 240 mmCooling -16/-12°C; 160 W/m2EPS 250 mmConcrete 250 mm33Slide34

34Slide35

„Floor“

 

structure with heating systemIce 50 mmConcrete 240 mmCooling -16/-12°C160 W/m2EPS 250 mmConcrete 250 mmHeating 10/8 °C; cca 10 W/m235Slide36

36Slide37

Heating of outdoor surfaces

Snowmelt

systemPipe spacing 15-50cmTemperature 50-80°CUse of antifreezeThermal output according to the amout of snow and outdoor temperature Large thermal inertiaMechanical resistance37Slide38

Air heating/cooling systems – circulating, ventilating.

Integration of heating/cooling systems.

38