/
IEEE TRANSACTIONS ON POWER ELECTRONICS VOL IEEE TRANSACTIONS ON POWER ELECTRONICS VOL

IEEE TRANSACTIONS ON POWER ELECTRONICS VOL - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
515 views
Uploaded On 2014-12-20

IEEE TRANSACTIONS ON POWER ELECTRONICS VOL - PPT Presentation

18 NO 1 JANUARY 2003 411 Predictive Digital Current Programmed Control Jingquan Chen Member IEEE Aleksandar Prodic Student Member IEEE Robert W Erickson Fellow IEEE and Dragan Maksimovic Member IEEE Abstract This paper explores predictive ID: 26699

JANUARY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON POWER ELECTRONICS V..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONPOWERELECTRONICS,VOL.18,NO.1,JANUARY2003PredictiveDigitalCurrentProgrammedControlJingquanChen,Member,IEEE,AleksandarProdic,StudentMember,IEEE,RobertW.Erickson,Fellow,IEEEandDraganMaksimovic,Member,IEEEThispaperexplorespredictivedigitalcurrentpro-grammedcontrolforvalley,peakoraveragecurrent.Thecontrollawsarederivedforthethreebasicconverters:buck,boost,andbuck–boost.Itisfoundthatforeachvariableofinterest(valley, IEEETRANSACTIONSONPOWERELECTRONICS,VOL.18,NO.1,JANUARY2003Inthispaper,anaccuratepredictivedigitalcontroltechniqueisproposedbasedoninductorcurrentwaveformpredictedbysampledinputandoutputvoltageandinductorcurrentinforma-tion.Inadditiontothepredictivevalleycontrol,wealsoconsiderrealizationofapredictivepeakcurrentandapredictiveaveragecurrentcontroltechniqueinthreebasicconverters,includingtheboost,thebuck,andthebuck–boostconverters.Theproposeddigitalcontroltechniquescanbeusedinarangeofpowercon-versionapplications,includingrectifierswithpowerfactorcor-rectionanddc–dcapplicationswithcurrentmodecontrol.Itisfoundthatthe“period-doubling”oscillationissues,whicharewellknowninanalogcurrentprogrammedcontrol[1]–[4],alsoexistindigitalpredictivecurrentcontrollers.Weshowhowtheoscillationproblemcanbeeliminatedbyproperlyselectingthemodulationmethodaccordingtothecontrolobjective(valley,peak,oraveragecurrent).Thepaperisorganizedasfollows.Predictivecurrentcon-trolunderthemostcommonlyusedtrailingedgepulse-widthmodulationisfirstintroducedfortheboostconverterinSec-tionII,followedbyananalysisoftheoscillationproblemsinaverageandpeakcurrentcontrol.Thecorrelationsbetweendif-ferentpulse-widthmodulationmethodsandcurrentcontrolob-jectivesarethenidentifiedinSectionIII.RobustnessanddesignconsiderationsarediscussedinSectionIV.Derivationofthepre-dictivecontrollawforothernonisolatedconvertersisgiveninSectionV.Finally,inSectionVI,thepredictiveaveragecurrentcontrollerisimplementedandexperimentallyverifiedinaboostPFCrectifier,andhighperformanceisdemonstratedunderstrictrequirementsforavionicsapplications.II.PROGRAMMEDONTROLODULATIONInthissection,threepredictivecurrentprogrammedcontroltechniquesarediscussed:valleycurrentcontrol,peakcurrentcontrol,andaveragecurrentcontrol.Thecommonlyusedtrailing-edgepulse-widthmodulationmethodillustratedinFig.2isassumed.Thepulsatingswitchcontrolsignal isproducedbycomparingthecontrolvariable withatrailingedgesaw-toothsignal .Underthismodulation,thetransistorswitchisturnedonatthebeginningofeachswitchingcycle,andturnedoffaftertime ,where istheswitchdutyratio.Theswitchthenstaysofffortheremainderoftheswitchingcycle.Allthreeconsideredcurrentcontroltechniquesarebasedonthesameapproachofusingthesampledinductorcurrentand(possibly)inputandoutputvoltagestocomputethedutyratiointhenextswitchingcyclesothattheerrorbetweenthecurrent andthetargetcontrolvariable(thevalley,thepeak,ortheaveragecurrent)isreducedtozero.Thesamplingofthecurrentoccursatequallyspacedintervalsequaltotheswitching .Withoutlossofgenerality,weassumethatthesample isobtainedbysamplingtheinductorcurrent atthebeginningofthe thswitchingperiod.Inallderivationsinthissection,theboostconverterisusedasanexample.TheresultsandconclusionsareextendedtootherbasicconverterconfigurationsinSectionV. Fig.1.Digitallycontrolledconverteremployinganoutervoltageandaninnercurrentloop. Fig.2.Trailingedgemodulation.A.PredictiveValleyCurrentControlThegoaloftheproposedcontrolmethodistoensurethatthevalleyinductorcurrentfollowsthereference .Therequireddutycycleforthenextswitchingperiodispredictedbasedonthesampledcurrentandpossiblytheinputandtheoutputvoltage.TheresultinginductorcurrentwaveformisshowninFig.3.Sincetheinputandtheoutputvoltageareslowlyvaryingsig-nals,theycanbeconsideredconstantduringaswitchingperiod.Thesampledinductorcurrent attime canbefoundasafunctionoftheprevioussampledvalue andtheap-plieddutyratio ,providedthattheinputvoltage,theoutputvoltage,theinductanceandtheswitchingperiodareknown Weusethenotation .Bycollectingterms,(1)canberewrittenas (2) etal.:PREDICTIVEDIGITALCURRENTPROGRAMMEDCONTROL Fig.3.InductorcurrentwaveformintheboostconverterundervalleycurrentWecanthenextend(2)foranotherswitchingcycletoobtain Thepredictionforthedutycycle cannowbeobtainedbasedonthevaluessampledinthepreviousswitchingperiod.Denotingthesampledcurrentas [ ],andsubstitutingthecon-trolobjective in(3),wehave Equation(4)canbesolvedforthepredicteddutycycle Equation(5)givesthebasiccontrollawforthepredictivecur-rentprogrammedcontrol.StabilitypropertiesofthepredictivevalleycurrentcontrolundertrailingedgemodulationcanbeexaminedwithreferencetothewaveformsofFig.4.Thesolidlineshowsthecurrentwaveforminsteadystate,whilethedashedlineshowsthecur-rentwithaperturbation atthebeginningoftheswitching .Sincetheeffectsofthepredicteddutycycle cannotbeobserveduntilthenextswitchingperiod,thispertur-bationappearsatthebeginningofthe thcycle.Withthenextdutyratio computedaccordingto(5),thevalleycurrentreachesthereference bytheendofthe switchingperiod.Theinitiallyassumedperturbationdisappears.Asaresult,forthepredictivevalleycontrolundertrailingedgemodulation,thecurrentcontrollerisinherentlystableforallop-eratingpoints.B.PredictivePeakCurrentControlPeakcurrentcontrol,whichamongotheradvantagesfeaturesinstantaneouspeakcurrentprotection,isthemostpopularcur-rentprogrammedcontrolmethodinanalogimplementationsfordc–dcapplications.Inthissection,weexaminepropertiesofthepredictivepeakcurrentcontrolundertrailingedgemodulation. Fig.4.Valleycurrentcontrolundertrailingedgemodulation. Fig.5.Peakcurrentcontrolundertrailingedgemodulation.Fig.5showstheinductorcurrentwaveformswherethesolidlinecorrespondstothesteadystateoperation,whilethedashedlineshowsthecurrentwithaperturbation atthebeginningoftheswitchingperiod .Inthiscase,thecontrolobjectiveisthatthepeakcurrentfollowsthereference .AsshowninFig.5,thenextdutyratio iscomputedsothatthepeakcurrentin thcycleequalsthereferencevalue .Ourobjectiveistofindhowtheperturbation propagatesunderthiscontrollaw.Fortheboostconverterincontinuousconductionmode(CCM),thesteady-statedutycycle andthesteady-statepeak aregivenby (6)and (7)where isthesteady-statevalleycurrent.AsshowninFig.5,assumethattheperturbation intheinductorcurrenthasbeendetectedbysamplingtheinductorcurrentintheswitching .Again,thisperturbationwillpropagatetothebegin-ningofthe thswitchingperiod.Takingintoaccountthisperturbation,thenewdutycyclecanbepredictedusingthefollowingrelationship: (8) IEEETRANSACTIONSONPOWERELECTRONICS,VOL.18,NO.1,JANUARY2003Using(6)and(7),thepredicteddutycyclecanbewrittenas Uponapplicationofthisdutycycle,thecurrentattheendofthe thswitchingcyclebecomes Therefore,thecurrentperturbationattheendofthe periodisgivenby Equation(11)showsthatoscillationsoccurundertheoperatingconditionswhenthedutycycleisgreaterthan0.5.Thisisex-actlythesameasinanalogcurrent-programmedcontrol,wheretheinstabilityisusuallysuppressedbyaddingaslope-compen-sationrampsignaltothesensedcurrentsignal[2].C.PredictiveAveCurrentControlInsomeapplications,theaveragecurrentcontrolispreferredcomparedtovalleyorpeakcurrentcontrol.Inparticular,inPFCapplications,theanalogaveragecurrentcontrolresultsinverylowcurrentdistortionwithouttheneedforanyadditionalInpredictiveaveragecurrentcontrol,thenewdutycycleiscomputedsothattheaveragecurrent inthenextswitchingcycleequalsthereference .Theaveragecurrentin thswitchingcyclecanbewrittenintermsofthevalleycurrentandtheapplieddutycycle Basedon(12),andassumingthesteady-stateandperturbedwaveformsasshowninFig.6,thepredicteddutycyclecanbefoundfrom Insteadystate,wehave Subtracting(14)from(13)yields Ifwedefine ,(15)canbesimplifiedas (16) Fig.6.Averagecurrentcontrolundertrailingedgemodulation.Byneglectingthesecondorderterm,weobtain Using(17),wecanfindthepredicteddutycycleintermsoftheperturbationandsteady-statevalues Theinductorcurrentattheendofthe thswitchingcycleisthenfoundas Finally,theperturbedcurrentattheendofthe thperiodisgivenby Weconcludethatundertrailingedgemodulationthepredictiveaveragecurrentcontrolhasthesameinstabilityproblemundertheoperatingconditionswhenthedutycycleisgreaterthan0.5.III.SELECTIONOFTHEODULATIONETHODINORRELATIONITHTHEONTROLInSectionII,wefoundthatundertrailingedgemodulationonlythepredictivevalleycurrentcontrolcanbeachievedwithout“period-doubling”oscillationsforalloperatingcondi-tions.Adistinctionbetweenthevalleycurrentcontrolandtheothertwocontrolobjectives(peakoraveragecurrent)isthatintrailingedgemodulationthetargetedcontrolvariable(thevalleycurrent)canalwaysbesampledatthebeginningoftheswitchingperiod,i.e.,atequallyspacedintervalsequaltotheswitchingperiod .Thisisnotthecaseforpeakoraveragecurrentcontrol.Forexample,undertrailingedgemodulation,thepeakcurrentoccursat ,i.e.,atvariabletimeinstantsduringaswitchingperiod.Asaresult,eventhoughthecon-trollermayachievetheobjectiveofforcingthepeakcurrenttofollowthereference,aperturbationinthecurrentwaveformcangrowintime,causingundesirableoscillations. etal.:PREDICTIVEDIGITALCURRENTPROGRAMMEDCONTROL Fig.7.Leadingedgemodulation.Akeypointineliminatingthestabilityproblemistoenablesamplingofthetargetedvariableofinterest(valley,peakorav-eragecurrent)atequallyspacedintervalsequaltotheswitchingperiod.Inthissection,weshowhowthiscanbeaccomplishedbyselectingthemodulationmethodincorrelationwiththetar-getedcontrolobjective.A.PredictivePeakCurrentControlUsingLeadingEdgeTheleadingedgemodulationisillustratedbythewaveformsofFig.7.Thepulsating,switchcontrolsignalisgeneratedbycomparingthecontrolvariablewithaleadingsaw-toothsignal.Atthebeginningofaswitchingperiod,thetransistorswitchisturnedoff,andthenturnedonat .Theswitchremainsonuntiltheendoftheperiod.Thepeakcurrentoccursatthebe-ginningofeachswitchingperiod,andcanthereforebesampledatequallyspacedintervalsequalto .FollowingthesamestepsasinSectionII-A,onefindsthatthepredictivepeakcurrentcon-trolunderleadingedgemodulationfollowsthelaw[givenby(5)]asthevalleycurrentcontrolundertrailingedgemod-ulation.ThewaveformsofFig.8illustratethepointthataper-turbationdisappearswithinaswitchingperiodandthereforethepredictivepeakcurrentcontrolunderleadingedgemodulationisinherentlystable.B.PredictiveAveCurrentControlUsingDualEdge(Triangle)ModulationThedualedge,ortrianglemodulation,isfoundtobesuitableforachievingpredictiveaveragecurrentcontrolwithoutoscil-lationproblems.Thismodulationcanbedefinedastrailing,il-lustratedbythewaveformsofFig.9,orasleading,asshowninFig.10.Inthecaseofthetrailingtrianglemodulation,thetransistorswitchisonatthebeginningofaswitchingcycle,itisturnedoffat andthenturnedonagainat .Inthecaseoftheleadingtrianglemodulation,thetransistorswitchisoffatthebeginningofaswitchingcycle.Bothtrianglemod-ulationmethodsaresuitableforthepredictiveaveragecurrent Fig.8.Peakcurrentcontrolunderleadingedgemodulation. Fig.9.Trailingtrianglemodulation.control.Weagainfindthatthesamecontrollawgivenby(5)appliesinthiscase.TheinductorcurrentwaveformillustratingoperationofthepredictiveaveragecurrentcontrolundertrailingtrianglemodulationisshowninFig.11.Thispredictiveaveragecurrentcontroldoesnothaveoscillationproblems.C.SummaryofPredictiveCurrentControlandModulationTableIsummarizesthecorrelationbetweendifferentmodu-lationmethodsandthecontrolledvariablesofinterest.Itcanbeobservedthatforeachvariableofinterest(valley,peakorav-eragecurrent)thereisachoiceoftheappropriatemodulationmethodtoachievepredictivedigitalcontrolwithoutoscillationproblems.Furthermore,thepredictivecontrollaw[givenby(5)]appliesto:1)valleycurrentcontrolundertrailingedgemodulation;2)peakcurrentcontrolunderleadingedgemodulation;3)averagecurrentcontrolundertrianglemodulation. IEEETRANSACTIONSONPOWERELECTRONICS,VOL.18,NO.1,JANUARY2003 Fig.10.Leadingtrianglemodulation. Fig.11.Averagecurrentcontrolundertrianglemodulation.TABLEIORRELATIONODULATIONONTROL.“PSCILLATIONSCCURFORTHENDICATEDANGEOFATIOSENOTESSCILLATIONFORTHEANGEOFATIO IV.ROBUSTNESSANDONSIDERATIONSItcanbeseenfromthecontrollawin(5)thatthepredic-tivecontroldependsontheassumptionsthattheinductance,theswitchingperiodandtheoutputvoltageareknown.Inpractice,theswitchingperiod isusuallydeterminedbytheDSPormicroprocessorsystem’sclockanditsvariationscanbeconsideredrelativelyinsignificant.However,thevalueoftheinductancemayhavesignificantinitialtolerancesandmayfurtherbeaffectedbychangesintemperature,operatingconditionsoraging.Theoutputvoltagevaluecanbeobtainedbysampling,whichisusuallydoneforthepurposeofclosingavoltagefeedbackloop.However,theoutputvoltageappearsinthedenominator,whichcomplicatescomputationofthepredicteddutycycle,especiallyinfixed-pointDSP/micropro-cessorsystemssuitableforpowercontrolapplications.Inthissection,wediscusshowtolerancesintheinductance(orpe-riod),andtheapproachofapproximatingtheoutputvoltageusingaconstantvalueaffectthecontrolperformance.Supposethattheconverterisoperatinginsteadystateandthatthecontrolledcurrenthasperturbation atthebeginningoftheswitchingperiod .Takingintoaccountthedifference betweentherealinductancevalueandtheassumedvalue,theerror betweenthepredicteddutycycleandthesteady-statevaluecanbefoundfrom(5) Thiserrorinthepredicteddutycyclecausestheerror ofthecurrentvalueattheendofthe thswitchingperiod Asshownby(22),theerrordecreasesandthecontrolperfor-manceisnotsignificantlyaffectedbytheinductancetolerancesaslongas ,whichisnotdifficulttomeet.Asimilarresultisobtainedfortolerancesintheswitchingperiod.Insteadofusingthereal-timesampledoutputvoltagevalue,weconsiderapproximatingtheoutputvoltagewiththeconstantreferencevalue toavoidthedivisionandtosimplifythecon-trollaw.Supposethatthereisanerror betweentheactualoutputvoltageandthereference.From(5),theresultingerror inthedutycycleisgivenby Asaresult,thecontrolledcurrentwillhaveanerror attheendofthenextswitchingperiod Equation(24)hastwoportions.Thefirsttermofthecurrenterrorisduetothecurrentperturbation,andwillgetsmallerprovidedthattheoutputvoltageerrorsatisfies .Thesecondtermisintroducedbythevoltageerrorandwillhaveaneffectofsettlingtheinductorcurrentinanewsteadystatewithanoffset awayfromthereference.Theoffseterror beobtainedfrom(24)bysetting Forapowerconverterwithwell-regulatedoutputvoltage, isverysmallandinmostcasestheoffseterrorcanbeignored.Weconcludethatitisreasonabletousethe(constant)outputvoltagereferenceinsteadofthesampledoutputvoltagetosimplifythecomputationinthepredictivecurrentcontroller. etal.:PREDICTIVEDIGITALCURRENTPROGRAMMEDCONTROLV.EXTENSIONSOFTHEIGITALROGRAMMEDONTROLTOONVERTERSBasicprinciplesofpredictiveprogrammedcontrolcanbeeasilyextendedtootherbasicconverters,i.e.,thebuckconverterandthebuck–boostconverter.Fig.12showsthegenericCCMinductorcurrentwaveformforswitchingconvertersunderthetrailingedgemodulation.Inthesubintervalwhenthetransistorison,theinductorcurrentincreaseswithaslope ,andthendecreaseswithaslope duringthesubintervalwhenthetransistorisoff.Forthebasicnonisolatedconverters,theslopesaregiveninTableII.Thepredictivecontrollawcanbeexpressedasafunctionoftheslopes , ,theswitchingperiod,andthedutyratiointhepreviouscycleas Byusingtheexpressionsfor and fromTableII,weob-tainthepredictivecontrollawforthebuckconverter andforthebuck–boostconverter Thestabilityconditionsimilarto(11)and(20)canbewrittenmoregenerallyas Thecondition(29)isvalidforallbasicconverters.Insteady-state,theinductorvolt-secondbalanceimplies (30)or Equations(30)and(31)showthatthestabilityconditionundercertainmodulationmethodisthesameforallbasicnonisolatedconvertersincontinuousconductionmode.Moreover,thecor-relationbetweenthemodulationmethodandthecurrentcontrolobjective,andtherobustnessconditions,whichwerediscussedinSectionsIIIandIVfortheboostconverter,applytoallbasicnonisolatedconverters.VI.EXPERIMENTALESULTSTodemonstrateperformanceofthepredictivecurrentcon-trol,a100Wsingle-phaseexperimentalPFCboostconverter(asshowninFig.1)wasdesignedandtestedforavionicsapplica-tions,whichhavemoredemandingspecifications,includingthelineinputfrequencyof400to800Hz,andlowtotalharmonicdistortion(THD)oflessthan10%[17],[18].Thepredictivecur-rentcontrolandtheoutputvoltageregulationarerealizedusing Fig.12.Genericinductorcurrentwaveformundervalleycurrentcontrol.TABLEIILOPEOFTHENDUCTORAVEFORMINONVERTERS theAnalogDevicesADMC-401DSPsystem[19],whichhasbuilt-indigitalPWM,A/Dconverters,anda16-bitfixed-pointcomputationalunit.Theinputinductanceis1mH,theoutputcapacitanceis47 F,andtheoutputdcvoltageisregulatedat190V.Thetwo-loopsystemasshowninFig.1wasimplemented.Theinputcurrentandtheinputvoltagearesampledattheswitchingfrequency(100KHzor200KHz)toensurethehighperformanceofthecurrentloopbasedonthepredictiveaveragecurrentcontrolundertrianglemodulation.TheoutputvoltageloopusesaslowPIregulatorthatprovidesavoltage-loopbandwidthofaboutonethirdofthelineinputfrequency[20].Theoutputvoltageissampledatafrequencyof4KHz,whichissufficienttoimplementfunctionsoftheslowoutputvoltageloopwhileatthesametimebeingrelativelyeasytorealizeusingfixed-pointarithmetic.Figs.13and14showtherectifiedinputvoltage(115Vrms)andtheinputcurrentwaveformsattheswitchingfrequencyof200KHzand100KHz,respectively.Thiscomparisonshowsthattheperformanceofthecurrentcontrolloopdoesn’trelyheavilyonveryhighswitchingfrequency.THDoflessthan2.5%isachievedunderallconditions,evenwhentheinputlinefrequencyis800Hzwithaswitchingfrequencyof100KHz.VII.CThispaperdescribespredictivedigitalcurrentprogrammedcontrolmethods.Ineachswitchingcycle,basedonthesampledvalueofthecurrent,thedutyratiointhepreviouscycle,and(possibly)thesamplesoftheinputand/ortheoutputvoltage,theswitchdutyratiointhenextswitchingcycleiscomputedto IEEETRANSACTIONSONPOWERELECTRONICS,VOL.18,NO.1,JANUARY2003 Fig.13.Rectifiedinputvoltage(top,100V/div),andtheinputcurrent(bottom,1A/div)at200KHzswitchingfrequency,800Hzlinefrequency,THDis2.2%. Fig.14.Rectifiedinputvoltage(top,100V/div),andtheinputcurrent(bottom,1A/div)at100KHzswitchingfrequency,800Hzlinefrequency,THDis2.4%.nulltheerrorbetweentheactualcurrentandthereference.Theimplementationrequiresonlyonecurrentsampleperperiodandhasrelativelymodestprocessingrequirements.Thepredictivedigitalcurrentprogrammedcontrollawisderivedforallbasicconverterconfigurationsandforthreedifferentcontrolvariablesofinterests:valley,peakoraveragecurrent.Itisfoundthatforeachvariableofinterest(valley,peakoraveragecurrent)thereisachoiceoftheappropriatemodulationmethodtoachievepredictivedigitalcurrentcontrolwithout“period-doubling”oscillationproblems.Itisalsoshownthatthepredictivecontrollawisthesameforthecontroltechniquewheretheoscillationproblemiseliminated:1)valleycurrentcontrolundertrailingedgemodulation;2)peakcurrentcontrolunderleadingedgemodulation;3)averagecurrentcontrolunderdual-edge(triangle)mod-Theproposeddigitalcontroltechniquescanbeusedinarangeofpowerconversionapplications,includingdc–dcconvertersandrectifierswithpowerfactorcorrection(PFC).Aprototypeofa100WPFCboostrectifierswitchingat100KHzor200KHzhasbeenconstructedusingaDSPsystemtoimplementthepre-dictiveaveragecurrentcontrolandaPIvoltageloopcontrol.VerylowTHD( 2.5%)oftheinputcurrentandhighperfor-mancethatmeetsrigorousavionicsrequirements(400–800Hzlinefrequency)havebeenexperimentallydemonstrated.[1]C.Deisch,“Simpleswitchingcontrolmethodchangespowerconverterintoacurrentsource,”inProc.IEEEPESC’78Conf.,1978,pp.300–306.[2]S.S.Hsu,A.Brown,L.Rensink,andR.D.Middlebrook,“Modelingandanalysisofswitchingdc-to-dcconvertersinconstant-frequencycurrentprogrammedmode,”inProc.IEEEPESC’79Conf.,1979,pp.284–301.[3]F.C.LeeandR.A.Carter,“Investigationsofstabilityanddynamicper-formancesofswitchingregulatorsemployingcurrent-injectedcontrol,”Proc.IEEEPESC’82Conf.,1982,pp.3–16.[4]R.RedlandN.O.Sokal,“Current-modecontrol,fivedifferenttypes,usedwiththethreebasicclassesofpowerconverters:Small-signalacandlarge-signaldccharacterization,stabilityrequirements,andimple-mentationofpracticalcircuits,”inProc.IEEEPESC’85Conf.,1985,pp.771–785.[5]R.RedlandB.Erisman,“Reducingdistortioninpeak-current-controlledboostpowerfactorcorrectors,”inProc.IEEEAPEC’94Conf.,1994,pp.[6]D.Maksimovic,“Designoftheclamped-currenthigh-power-factorboostrectifier,”inProc.IEEEAPEC’94Conf.,1994,pp.584–590.[7]J.LaiandD.Chen,“Designconsiderationforpowerfactorcorrectionboostconverteroperatingattheboundaryofcontinuousconductionmodeanddiscontinuousconductionmode,”inProc.IEEEAPEC’93Conf.,1993,pp.267–273.[8]J.Chen,R.Erickson,andD.Maksimovic,“Averagedswitchmodelingofboundaryconductionmodedc-to-dcconverters,”inProc.IEEEIECON’01Conf.,2001,pp.844–849.[9]L.Dixon,“Averagecurrentmodecontrolofswitchingpowersupplies,”Proc.UnitrodePowerSupplyDesignSem.,1990.[10]A.H.Mitwalli,S.B.Leeb,G.C.Verghese,andV.J.Thottuvelil,“Anadaptivedigitalcontrollerforaunitypowerfactorconverter,”Trans.PowerElectron.,vol.11,pp.374–382,Mar.1996.[11]S.Buso,P.Mattavelli,L.Rossetto,andG.Spiazzi,“Simpledigitalcon-verterimprovingdynamicperformanceofpowerfactorpreregulators,”IEEETrans.PowerElectron.,vol.13,pp.814–823,Sept.1998.[12]A.Prodic,J.Chen,D.Maksimovic,andR.W.Erickson,“Digitallycon-trolledlow-harmonicrectifierhavingfastdynamicresponses,”inProc.IEEEAPEC’02Conf.,2002,pp.476–482.[13]R.Wu,S.B.Dewan,andG.R.Slemon,“AnalysisofaPWMactodcvoltagesourceconverterunderthepredictedcurrentcontrolwithafixedswitchingfrequency,”IEEETrans.Ind.Applicat.,vol.27,no.4,pp.756–764,July/Aug.1991.[14]T.Kawabata,T.Miyashita,andY.Yamamoto,“DeadbeatcontrolofthreephasePWMinverter,”IEEETrans.PowerElectron.,vol.5,pp.21–28,Jan.1990.[15]S.BibianandH.Jin,“Highperformancepredictivedead-beatdigitalcontrollerfordcpowersupplies,”inProc.IEEEAPEC’01Conf.,2001,pp.67–73. ,“Digitalcontrolwithimprovedperformancesforboostpowerfactorcorrectioncircuits,”inProc.IEEEAPEC’01Conf.,2001,pp.[17]I.Moir,“More-electricaircraft-systemconsiderations,”inProc.IEEColloq.Elect.Mach.,Syst.,MoreElect.,Aircraft,1999,pp.10/1–10/9.[18]P.Athalye,D.Maksimovic,andR.Erickson,“High-performancefront-endconverterforavionicsapplications,”inProc.PowerConv.Intell.MotionConf.,Sept.2001.[19]AnalogDevicesInc.,“ADMC-401single-chip,DSP-basedhighperfor-mancemotorcontroller,rev.B,”,2000.[20]R.Erickson,M.Madigan,andS.Singer,“Designofasimplehighpowerfactorrectifierbasedontheflybackconverter,”inProc.IEEEAPEC’90Conf.,1990,pp.792–801. JingquanChen(S’01–M’02)receivedtheB.S.degreeinelectricalengineeringfromTsinghuaUniversity,Beijing,China,in1995,theM.S.degreeinpowerelectronicsfromChineseAcademyofSciences,Beijing,China,in1998,andthePh.D.degreeinelectricalengineeringfromtheUniversityofColoradoatBoulderin2002.HeiscurrentlyaSeniorMemberoftheResearchStaffatPhilipsResearch,BriarcliffManor,NY.Hisresearchinterestsincludesynthesis,modeling,anddigitalcontrolofswitchingpowerconverters,powerfactorcorrectiontechniques,andlightingelectronics. etal.:PREDICTIVEDIGITALCURRENTPROGRAMMEDCONTROL AleksandarProdic(S’00)wasborninNoviSad,Yugoslavia,onJuly19,1970.HereceivedtheDipl.Ing.degreeinelectricalengineeringfromtheUniversityofNoviSadin1994andtheM.S.degreefromtheUniversityofColoradoinBoulderin2000whereheiscurrentlypursuingPh.D.degreeinelectricalengineering.SinceSeptember1999,hehasbeenaResearchAssistantintheColoradoPowerElectronicsCenter(CoPEC),UniversityofColoradoatBoulder.Hisresearchinterestsareindigitalcontrolofswitchingpowerconverters,includingmodeling,design,simulation,andmixed-signalVLSIand/orDSPimplementation. RobertW.Erickson(F’00)receivedtheB.S.,M.S.,andPh.D.degreesinelectricalengineeringfromtheCaliforniaInstituteofTechnology,Pasadena,in1978,1980,and1982,respectively.Since1982,hehasbeenamemberofthefacultyofelectricalandcomputerengineeringattheUniversityofColorado,Boulder,whereheiscurrentlyProfessorandChairman.TheColoradoPowerElectronicsCenterishelpingtheindustryinlow-harmonicrectifiers,dc–dcconvertersforbattery-poweredsystems,andmagneticsmodelingformultiple-outputconverters.HeistheauthorofthetextbookofPowerElectronics(2ndedition).Heistheauthorofapproximately60journalandconferencepapersintheareaofpowerelectronics.Dr.EricksonreceivedtheIEEEPowerElectronicsSocietyTransactionsPrizePaperAwardin1996. DraganMaksimovic(M’89)receivedtheB.S.andM.S.degreesinelectricalengineeringfromtheUniversityofBelgrade,Yugoslavia,andthePh.D.degreefromtheCaliforniaInstituteofTechnology,Pasadena,in1984,1986,and1989,respectively.From1989to1992,hewaswiththeUniversityofBelgrade,Yugoslavia.Since1992hehasbeenwiththeDepartmentofElectricalandComputerEngineering,UniversityofColorado,Boulder,whereheiscurrentlyanAssociateProfessorandCo-DirectoroftheColoradoPowerElectronicsCenter(CoPEC).Hiscurrentresearchinterestsincludesimulationandcontroltechniques,mixed-signalintegrated-circuitdesignforpowermanagementapplications,andpowerelectronicsforlow-power,portablesystems.Dr.MaksimovicreceivedNSFCAREERAward,in1997,andaPowerElec-tronicsSocietyTransactionsPrizePaperAward.