/
RungeKutta Methods In contrast to the multistep methods of the previous section RungeKutta RungeKutta Methods In contrast to the multistep methods of the previous section RungeKutta

RungeKutta Methods In contrast to the multistep methods of the previous section RungeKutta - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
637 views
Uploaded On 2014-12-20

RungeKutta Methods In contrast to the multistep methods of the previous section RungeKutta - PPT Presentation

They are motivated by the dependence of the Taylor methods on the speci64257c IVP These new methods do not require derivatives of the righthand side function in the code and are therefore generalpurpose initial value problem solvers RungeKutta metho ID: 27123

They are motivated

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "RungeKutta Methods In contrast to the mu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2f(t;y)+h ExplicitRunge-Kuttamethodsarecharacterizedbyastrictlylowertriangularma-trixA,i.e.,aij=0ifji.Moreover,thecoecientsciandaijareconnectedbytheconditionci=Xj=1aij;i=1;2;:::;:Thissaysthatciistherowsumofthei-throwofthematrixA.Thisconditionisrequiredtohaveamethodoforderone,i.e.,forconsistency.Welimitourdiscussiontosuchmethodsnow.Thus,foranexplicitsecond-ordermethodwenecessarilyhavea11=a12=a22=c1=0.Wecannowstudywhatothercombinationsofb1,b2,c2anda21in(45)giveusasecond-ordermethod.ThebivariateTaylorexpansionyieldsf(t+c2h;y+ha21~k1)=f(t;y)+c2hft(t;y)+ha21fy(t;y)~k1+O(h2)=f(t;y)+c2hft(t;y)+ha21fy(t;y)f(t;y)+O(h2):Therefore,thegeneralsecond-orderRunge-Kuttaassumption(45)becomesy(t+h)=y(t)+h[b1f(t;y)+b2ff(t;y)+c2hft(t;y)+ha21fy(t;y)f(t;y)g]+O(h3)=y(t)+(b1+b2)hf(t;y)+b2h2[c2ft(t;y)+a21fy(t;y)f(t;y)]+O(h3):InorderforthistomatchthegeneralTaylorexpansion(43)wewantb1+b2=1c2b2=1 2a21b2=1 2:Thus,wehaveasystemofthreenonlinearequationsforourfourunknowns.Onepopularsolutionisthechoiceb1=0,b2=1,andc2=a21=1 2.Thisleadstothemodi edEulermethod(sometimesalsoreferredtoasthemidpointrule,seethediscussioninSection3.3below)yn+1=yn+hk2withk1=f(tn;yn)k2=f(tn+h 2;yn+h 2k1):ItsButchertableauxisoftheform 0 001 2 1 20 01. Remark Thechoiceb1=1,b2=0leadstoEuler'smethod.However,sincenowc2b26=1 2anda21b26=1 2thismethoddoesnothavesecond-orderaccuracy. 58 evaluationsoffpertimestep 2 3 4 5 6 7 8 9 10 11 maximumorderachievable 2 3 4 4 5 6 6 7 7 8 Table4:EciencyofRunge-Kuttamethods. Thesedataimplythathigher-order(�4)Runge-Kuttamethodsarerelativelyinecient.Precisedataforhigher-ordermethodsdoesnotseemtobeknown.However,certainhigher-ordermethodsmaystillbeappropriateifwewanttoconstructaRunge-Kuttamethodwhichadaptivelychoosesthestepsizeforthetimestepinordertokeepthelocaltruncationerrorsmall(seeSection5).3.3ConnectiontoNumericalIntegrationRulesWenowillustratetheconnectionofRunge-Kuttamethodstonumericalintegrationrules.Asbefore,weconsidertheIVPy0(t)=f(t;y(t))y(t0)=y0andintegratebothsidesofthedi erentialequationfromttot+htoobtainy(t+h)�y(t)=Zt+htf(;y())d:(47)Therefore,thesolutiontoourIVPcanbeobtainedbysolvingtheintegralequation(47).Ofcourse,wecanusenumericalintegrationtodothis: 1. UsingtheleftendpointmethodZbaf(x)dxb�a n| {z }=hn�1Xi=0f(xi)onasingleinterval,i.e.,withn=1,anda=t,b=t+hwegetZt+htf(;y())dt+h�t 1f(0;y(0))=hf(t;y(t))since0=t,theleftendpointoftheinterval.Thus,aswesawearlier,(47)isequivalenttoEuler'smethod. 2. UsingthetrapezoidalruleZbaf(x)dxb�a 2[f(a)+f(b)]witha=tandb=t+hgivesusZt+htf(;y())dh 2[f(t;y(t))+f(t+h;y(t+h))]: 60 4. Simpson'sruleyieldsthefourth-orderRunge-Kuttamethodincasethereisnodependenceoffony. 5. Gaussquadratureleadstoso-calledGauss-Runge-KuttaorGauss-Legendremeth-ods.Onesuchmethodistheimplicitmidpointruleyn+1=yn+hf(tn+h 2;1 2(yn+yn+1))encounteredearlier.TheButchertableauxforthisone-stageordertwomethodisgivenby 1 2 1 2 1. NotethatthegeneralimplicitRunge-Kuttamethodisoftheformyn+1=yn+hXj=1bjkjwithkj=f(tn+cjh;yn+hjXi=1aj;iki)forallvaluesofj=1;:::;.Thus,theimplicitmidpointrulecorrespondstoyn+1=yn+hk1withk1=f(tn+h 2;yn+h 2k1)|obviouslyanimplicitmethod. 6. MoregeneralimplicitRunge-Kuttamethodsexist.However,theirconstructionismoredicult,andcansometimesbelinkedtocollocationmethods.SomedetailsaregivenattheendofChapter3intheIserlesbook. 62