/
Atmospheric Correction Algorithm Atmospheric Correction Algorithm

Atmospheric Correction Algorithm - PowerPoint Presentation

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
491 views
Uploaded On 2017-04-28

Atmospheric Correction Algorithm - PPT Presentation

for the GOCI Jae Hyun Ahn JooHyung Ryu Young Jae Park YuHwan Ahn Im Sang Oh Korea Ocean Research amp Development Institute Seoul National University I n d e x Introduction ID: 542351

atmospheric aerosol nir correction aerosol atmospheric correction nir amp modis standard model algorithm process nasa step goci reflectance scattering remove ssmm rrs

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Atmospheric Correction Algorithm" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Atmospheric Correction Algorithm

for the GOCI

Jae Hyun

Ahn

*

Joo-Hyung

Ryu

*

Young Jae Park*

Yu-Hwan

Ahn

*

Im

Sang Oh**

Korea Ocean Research & Development Institute

Seoul National UniversitySlide2

I n d e x _

Introduction

_

Atmospheric CorrectionAtmospheric Algorithms of the GOCI> Standard NASA Algorithm

> SGCA

> SSMM

Process of Atmospheric Correction _Standard NASA AlgorithmSGCASSMMResult & Validation _ResultValidationConclusion _

Ocean ColorSlide3

1. Introduction _

Atmospheric

Correction

M(λ)

*L

TOA

(λ)*Rrs(λ)

Chl

SSCDOM

Radiometric Calibration

Atmospheric

Correction

L2 algorithms

L

TOA

(555

nm

)

Rrs

(555

nm

)

AtmosphericCorrection

*L : radiance

*

Rrs

: remote sensing reflectanceSlide4

1. Introduction

_

Atmospheric

Correction

Clear water / thin aerosol case

*

Lr: Radiance of molecular scattering La : Radiance of aerosol scattring*Lw

: Radiance of Ocean

Case 1 water : LW is 1~7% of LTOASlide5

1. Introduction

_

Atmospheric Correction

Issue : GOCI has longer optical path than the polar orbit satellite

(MODIS : 0˚ < Satellite zenith angle < 40˚)

26˚ < Satellite zenith angle < 55˚

Observation area

Earth

GOCI

equatorSlide6

Introduction

_

3 atmospheric

Algorithms of the GOCIStandard NASA algorithmA classical standard atmospheric correction algorithm

Developed by

M.Wang

& H.R.GordonAerosol selection, turbid-water iterative method, diffuse transmittance models are updated by J.H.AhnSSMM (Spectral Shape Matching Method)Developed by Y.H.Ahn & P.ShanmugamUsing reference siteAerosol models updated by J.H.Ahn

SGCA (Sun-Glint Correction Algorithm)

Developed by HYGEOSRemoving sun-glint & atmospheric signalPolynomial fitting algorithm (ocean color & atmospheric model

)Slide7

2. Process of Atmospheric Correction _

Geometric Corrected TOA Radiance Image

L

TOA(λ)

Raw Image

Reflectance of TOA Image

ρ(λ)=ρ‘ (λ) + ρR (

λ)

Reflectance of Ocean + Aerosol Image

ρ

(

λ

) =

T

d

)ρW(λ) + ρA(λ)

+ ρRA(λ)

Reflectance of Ocean Image

ρW(λ)

Level 2 ProductChl, SS, CDOM, Kd490, …

Radiometric Calibration & Geometric Correction

Downward Solar Irradiance Normalization

 Longitude, Latitude, Time, SZA, VZA, AZA

Remove Rayleigh & Sun-glint Reflectance & Mask

Radiative

Transfer Equation,

Cox&Munk

Model

Remove Aerosol Reflectance

Radiative

Transfer Equation, Aerosol Model

Underwater Algorithm

Reflectance of Ocean Image

Rrs

(

λ

)

Atmospheric Correction

Standard

NASA

Algorithm

SSMM

SGCASlide8

2. Process of Atmospheric Correction _

Step 1. Downward Solar Irradiance Normalization

Downward Solar Irradiance

Normalization

L

TOA

(

λ

)

cos

(

θ

S

)

*

θ

S : solar zenith angleF0(

λ) : Extraterrestrial spectral irradianceρTOA

(λ)Slide9

0

1

2

3

4

5

7

6

9

8

12

13

14

15

11

10

2. Process of Atmospheric Correction _

Slot Correction of Solar Irradiance Normalization

cos

(

θ

S

)

Step 1. Downward Solar Irradiance NormalizationSlide10

2. Process of Atmospheric Correction _

Step

2.

Remove Rayleigh Signal

ρ

TOA

(443

nm

)

ρ

R

(443

nm

)

ρ

(443

nm)Slide11

2. Process of Atmospheric Correction _

Remove

direct & sun-glinted Rayleigh reflectance Computed by radiative transfer equation

Integrate with GOCI bands’ spectral response Using pre-computed LUT Wind speed : 0~16 m/s

Step 3. Remove Rayleigh & Sun-glint Reflectance

Scattering off a rough sea surface

Molecular scatteringSlide12

M

2. Process of Atmospheric Correction _

Step

3.

Land & Cloud Masking

Using threshold of Band8 (865nm)

Masking 5x5 around the above

threshold

pixel

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

MSlide13

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol

Signal

ρ

(555

nm

)

ρ

A

(555

nm

)+

ρ

RA

(555

nm

)ρW (555nm

)Slide14

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol

Signal

Standard NASA algorithm Basic Assumption : ρW(NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm)

Atmospheric Correction

Select

2 Aerosol Type

Multiple Scattering to Single Scattering

for all Aerosol Types

Get Two Aerosol Models (model1/model2)

ε

model1

(

B7, B8

)

<

ε

ave(B7, B8

) < εmodel2(B7, B8)

Look-up Table

from

RTE (6S)

Calculate Multiple Scattering of Specific Aerosol type

Get

ε

(λ, B8) for all band

Calculate Single Scattering of 2 Specific Aerosol type

Calculate Single Scattering Reflectance

for all Band

ρ

as

model

(

λ

)

2 Aerosol Models

sza

/

vza

/

aza

ρ

as

model1

(

λ

)

ρ

as

model2

(

λ

)

Get

ρ

a

(

λ

) +

ρ

ra

(

λ

)

and t(

λ

)

of 2 models

Interpolate

ρ

a

(

λ

) +

ρ

ra

(

λ

)and t(λ)

of 2 models

Calculate Rayleigh ScatteringSlide15

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol

Signal

Standard NASA algorithm

Aerosol model selection (Modified)

Select

2 Aerosol Type

Multiple Scattering to Single Scattering

for all Aerosol Types

Get Two Aerosol Models (model1/model2)

ε

model1

(

B7, B8

)

<

ε

ave

(B7, B8) < ε

model2(B7, B8)

Average all aerosol models’

ε(B7, B8)Select 4 aerosol models

Average 4 aerosol models’ ε(B7, B8)

Select 2 aerosol models

Get weight of 2 aerosol modelsSlide16

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol

Signal

Aerosol models Maritime (RH 50%, RH

80%, RH

99%)

Urban (RH 50%, RH 80%, RH 99%) Continental (RH 50%, RH 80% RH 99%)

Band 8 signal(aerosol signal)

Aerosol model selection result

Aerosol removed signal

(pure ocean signal :

ρ

w

(443))

East sea

East sea

East sea

East seaSlide17

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol Reflectance

SSMM (Spectral Shape Matching Method)

Assumption : ρW(NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm) Assumption : ρaerosol_model_1(

λ

) +

ρaerosol_model_2(λ) = 0 Use reference site’s spectrum shape Atmospheric Correction

LUT

Reflectance of Specific Aerosol type

2 Aerosol Models

sza

/

vza

/

aza

ρ

a

(

λ

) + ρra

(λ)and t(λ)

Calculate Rayleigh Scattering

Reference site

Get Aerosol reflectance

Get Two Aerosol Models & mixing ratio from LUTSlide18

ρ

TOA

(NIR)=

ρ

r

(NIR) + ρa(NIR) + ρra(NIR) + t(NIR) ρf(NIR) + t(NIR) ρw(NIR)

ρr (λ

) calculated by RTEρa

(

λ

) +

ρ

ra

(

λ

) calculated by LUTt(NIR)

 calculated by LUT + RTEρf(NIR) calculated by Cox&Munk’s

Eqρ

w (λ) chl

, ss

Atmospheric Correction

Underwater Algorithm

CHL, TSM 

ρw (NIR)

Ocean Color Model

ρ

w

(

λ

),

chl

 corrected

ρ

w

(

λ

)

BRDF

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol Reflectance

Iterative Method of NASA Standard Algorithm & SSMM

Turbid water :

ρ

W

(NIR) ≠0Slide19

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol

Signal Iterative Method of NASA Standard Algorithm & SSMM

Rrs(NIR) = f/Q*bb(NIR)/(a(NIR)+bb(NIR)) Bb(NIR) = b

b

w

(NIR)+bbchl(NIR) + bbnc(NIR) a(NIR) = aw(NIR)+ achl(NIR) + anc(NIR

ρW

(865nm)

ρ

W

(865

nm

)Slide20

2. Process of Atmospheric Correction _

Step 4. Remove Aerosol

Signal

ρ‘ (λ)

Td(λ)

ρ

WMOD(λ) + ρA(λ)+ρRA(λ)+ error(λ)ρWMOD parameters

, chl,

Bb

S

)

ρ

Aerosol

MOD

parameters

(C

0

, C1

, C2)

Min-error

(λ)

Final value

(chl, C0, C1, C2)

ρW(λ)

SGCA (Sun-glint Correction Algorithm) Basic Assumption :

ρ

W

MOD

(

λ

) is valid

Polynomial fitting :

ρ

W

MOD

(

λ

) &

ρ

Aerosol

MOD

(

λ

)

ρ

W

MOD

(

λ

) : Using Biogenic optical model (by

A.Morel

)

ρ

Aerosol

MOD

(

λ

) : C

0

+ C

1

λ

-2

+

C

2

λ

-4Slide21

B1

2. Process of Atmospheric Correction _

Step 5. Apply Diffuse Transmittance

Extract Rayleigh diffuse transmittance Generic Rayleigh diffuse transmittance model

τ

r(λ) : use H.R.Gordon’s model

B3

B4

B8

Td

r

cos

(

Ф

)

Model’s

Td

r

RTE’s

Td

rSlide22

2. Process of Atmospheric Correction _

Step 5. Apply Diffuse Transmittance

Extract Rayleigh diffuse transmittance

A simple Rayleigh diffuse transmittance model

C

6

C

5

C4

C

3

C

2

C

1

C

0

412nm

2.446662E+00

-8.426278E+00

1.091486E+01

-5.986775E+003.424127E-011.212632E+00

3.582148E-01443nm

2.439042E-016.214171E-02-2.343571E+00

4.741604E+00

-4.368938E+002.218751E+00

3.401276E-01

490nm

-3.409564E+00

1.368336E+01

-2.270315E+01

2.024385E+01

-1.059768E+01

3.364536E+00

3.456215E-01

555nm

-6.190158E+00

2.375412E+01

-3.712744E+01

3.049661E+01

-1.420755E+01

3.801402E+00

4.276636E-01

660nm

-6.027454E+00

2.276901E+01

-3.481947E+01

2.770477E+01

-1.228477E+01

3.025252E+00

6.094426E-01

680nm

-5.722233E+00

2.158916E+01

-3.295611E+01

2.615090E+01

-1.154451E+01

2.820577E+00

6.416646E-01

745nm

-4.680227E+00

1.760824E+01

-2.677182E+01

2.111729E+01

-9.234431E+00

2.219140E+00

7.273351E-01

865nm

-3.040593E+00

1.140555E+01

-1.727012E+01

1.354123E+01

-5.866066E+00

1.386646E+00

8.353374E-01Slide23

2. Process of Atmospheric Correction _

Step 5. Apply Diffuse Transmittance

Get aerosol diffuse transmittance from AOT

Aerosol model, single scattering reflectance, single scattering albedo, phase function  Get aerosol optical thickness A simple aerosol diffuse transmittance model (Hajime Fukushima, 1998)

Using

Aerosol+Rayleigh

LUT (Future work) A generic data driven methodSlide24

GOCI with NASA standard 2011/03/17 03:16 (UTC)

3.

Result & Validation _

ResultComparison images of GOCI & MODIS (NASA Standard Algorithm)

MODIS with NASA standard 2011/03/17 05:05 (UTC)Slide25

3.

Result & Validation

_ Result

Comparison spectrums of GOCI & MODIS (with NASA Standard Algorithm)

B1 : 412nm

B2 : 443nm

B3 : 490nm (MODIS : 488nm)B4 : 555nm (MODIS : 551nm)B5 : 660nm (MODIS : 667nm)B6 : 680nm (MODIS : 678nm)

GOCI

MODIS

GOCI

MODISSlide26

SSMM

Rrs

(412

nm

)

SSMM

Rrs

(443nm

)

SSMM

Rrs

(490

nm

)

SSMM

Rrs

(555

nm)

MODIS Rrs(412

nm)

MODIS Rrs(443nm)

MODIS Rrs(490nm)

MODIS Rrs(555nm

)GOCI : SSMM 2010/09/17 04:16 (UTC)

MODIS : NASA Standard Algorithm 2010/09/17 04:45 (UTC)

3.

Result & Validation

_

Result

Comparison images of SSMM & MODIS (NASA Standard Algorithm)Slide27

SSMM

nLw

(555nm): 2010. 08. 20 04:16 (UTC)

SGCA

nLw

(555nm): 2010. 08. 20 04:16 (UTC)

MODIS

nLw

(555nm): 2010. 08. 20 04:25 (UTC)

Comparison

nLw

spectrums of SSMM & SGCA & MODIS (NASA Standard Algorithm)

3.

Result & Validation

_

Validation

SSMM

SGCA

NASA Standard (MODIS)Slide28

4.

Conclusion _

NASA Standard Algorithm for the GOCI Basic schema is all implemented.

Need to improve the ocean color model Add more good arrangement aerosol models

Need to consider the new aerosol model for the GOCI observation

area

Change to the look up table based diffuse transmittance estimation Aerosol model selection and weight method update SSMM Looks reasonable but needs more tuning Better result high turbidity water and blue absorption aerosol case Also consider about horizontal aerosol type changes Collect more reference site SGCA

Relatively good matching at the high optical thickness case Improvement for turbid water

Needs more local tuningSlide29

THANK YOU