/
Discriminating Between the Bivariate Generalized Exponential and Bivariate Weibull distributions Discriminating Between the Bivariate Generalized Exponential and Bivariate Weibull distributions

Discriminating Between the Bivariate Generalized Exponential and Bivariate Weibull distributions - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
400 views
Uploaded On 2017-04-12

Discriminating Between the Bivariate Generalized Exponential and Bivariate Weibull distributions - PPT Presentation

IntroductionRecentlythetwoparametergeneralizedexponentialGEdistributionproposedbyGuptaandKundu1999hasreceivedsomeattentionThetwoparameterGEdistributionwhichhasoneshapeparameterandonescalepar ID: 339149

IntroductionRecently thetwo-parametergeneralizedexponential(GE)distributionproposedbyGuptaandKundu(1999)hasreceivedsomeattention.Thetwo-parameterGEdistribution whichhasoneshapeparameter andonescalepar

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Discriminating Between the Bivariate Gen..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

DiscriminatingBetweentheBivariateGeneralizedExponentialandBivariateWeibullDistributionsArabinKumarDey&DebasisKunduyzAbstractRecentlyKunduandGupta(\Bivariategeneralizedexponentialdistribution",Jour-nalofMultivariateAnalysis,vol.100,581-593,2009)introducedabivariategener-alizedexponentialdistribution,whosemarginalsaregeneralizedexponentialdistribu-tions.Thebivariategeneralizedexponentialdistributionisasingulardistribution,similarlyasthewellknownMarshall-OlkinbivariateWeibulldistribution.Thetwosingularbivariatedistributionsfunctionshaveverysimilarjointprobabilitydensityfunctions.Inthispaperweconsiderthediscriminationbetweenthetwobivariatedis-tributionfunctions.Thedi erenceofthemaximizedlog-likelihoodfunctionsisusedindiscriminatingbetweenthetwodistributionfunctions.Theasymptoticdistributionoftheteststatistichasbeenobtainedanditcanbeusedtocomputetheasymptoticprobabilityofcorrectselection.MonteCarlosimulationsareperformedtostudythee ectivenessoftheproposedmethod.Onedatasethasbeenanalyzedforillustrativepurposes.KeyWordsandPhrases:Likelihoodratiotest;asymptoticdistribution;probabilityofcorrectselection;MonteCarlosimulations;EMalgorithm;maximumlikelihoodestimator.yDepartmentofMathematicsandStatistics,IndianInstituteofTechnologyKanpur,Pin208016,India.zCorrespondingauthor.e-mail:kundu@iitk.ac.in1 IntroductionRecently,thetwo-parametergeneralizedexponential(GE)distributionproposedbyGuptaandKundu(1999)hasreceivedsomeattention.Thetwo-parameterGEdistribution,whichhasoneshapeparameter,andonescaleparameterisapositivelyskeweddistribution.Ithasseveraldesirableproperties,andmanyofitspropertiesareverysimilartothecorrespond-ingpropertiesofthewellknownWeibulldistribution.Forexample,theprobabilitydensityfunctions(PDFs)andthehazardfunctions(HFs)oftheGEdistributionandWeibulldistri-butionareverysimilar,andboththedistributionshavenicecompactdistributionfunctions.Boththedistributionscontainexponentialdistributionasaspecialcase,therefore,theyareextensionsoftheexponentialdistributionsbutindi erentmanners.ItisfurtherobservedthattheGEdistributionalsocanbeusedquitesuccessfullyinanalyzingpositivelyskeweddatasets,inplaceofWeibulldistribution,andoftenitisverydiculttodistinguishbetweenthetwo.ForsomerecentdevelopmentsonGEdistribution,andforitsdi erentapplications,thereadersarereferredtothereviewarticlebyGuptaandKundu(2007).Theproblemoftestingwhethersomegivenobservationsfollowoneofthetwo(ormore)probabilitydistributionfunctions,isquiteanoldstatisticalproblem.Cox(1961),seealsoCox(1962), rstconsideredthisprobleminhisclassicalpaper,andhealsodiscussedthee ectofchoosingthewrongmodel.Sincethenextensiveworkhasbeendoneindiscriminatingbetweentwoormoredistributionfunctions,seeforexampleAtkinson(1969,1970),BainandEnglehardt(1980),Marshall,MezaandOlkin(2001),DeyandKundu(2009,2010)andthereferencescitedtherein.Inrecenttimesitisobserved,seeGuptaandKundu(2003,2006),thatduetotheclosenessbetweenWeibullandGEdistributions,itisextremelydiculttodiscriminatebetweenthesetwodistributionfunctions.Notethatiftheshapeparameterisone,thetwo2 distributionfunctionsarenotdistinguishable.Forsmallsamplesizestheprobabilityofcorrectselection(PCS)canbequiteloweveniftheshapeparameterisnotveryclosetoone.Interestingly,althoughextensiveworkhasbeendoneindiscriminatingbetweentwoormoreunivariatedistributionfunctions,butnoworkhasbeenfoundindiscriminatingbetweentwobivariatedistributionfunctions.RecentlyKunduandGupta(2009)introducedasingularbivariatedistributionfunctionwhosemarginalsareGEdistributionfunctions,andnameditasthebivariategeneralizedexponentialdistribution(BVGE).Thefour-parameterBVGEdistributionhasseveraldesir-ableproperties,anditcanbeusedquitee ectivelytoanalyzebivariatedatawhenthereareties.Anotherfour-parameterwellknownbivariatesingulardistributionistheMarshall-OlkinbivariateWeibull(MOBW)distribution,whichhasbeenusedquitee ectivelytoanalyzebi-variatedatawhenthereareties,seeforexampleKotz,BalakrishnanandJohnson(2000).TheMOBWdistributionhasWeibullmarginals.Therefore,itisclearthatforcertainrangeofparametervalues,themarginalsoftheBVGEandMOBWwillbeverysimilar.InfactitisobservedthattheshapesofthejointPDFsofBVGEandMOBWalsocanbeverysimilarinnature.InthispaperweconsiderdiscriminatingbetweenBVGEandMOBWdistributions.Wehaveusedthedi erenceofthemaximizedlog-likelihoodvaluesindiscriminatingbetweenthetwodistributionfunctions.Theexactdistributionoftheproposedteststatisticisdiculttoobtain,andhenceweobtainitsasymptoticdistribution.Itisobservedthattheasymptoticdistributionoftheteststatisticisnormallydistributedandithasbeenusedtocomputetheprobabilityofcorrectselection(PCS).IncomputingthePCSoneneedstocomputethemisspeci edparameters.Computationofthemisspeci edparametersinvolvessolvingafourdimensionaloptimizationproblem.Wesuggestanapproximation,whichinvolvessolvingaonedimensionaloptimizationproblemonly.Therefore,computationallyitbecomesvery3 ecient.MonteCarlosimulationsareperformedtostudythee ectivenessoftheproposedmethod,anditisobservedthatevenformoderatesamplesizestheasymptoticresultsmatchverywellwiththesimulatedresults.Weperformtheanalysisofadatasetforillustrativepurposes.Restofthepaperisorganizedasfollows.InSection2,webrie\rydiscussabouttheBVGEandMOBWdistributions.ThediscriminationprocedureispresentedinSection3.TheasymptoticdistributionoftheteststatisticsforboththecasesareprovidedinSection4.Thecalculationofthemisspeci edparametersarediscussedinSection5.InSection6,wepresenttheMonteCarlosimulationresultsandtheanalysisofadatasetispresentedinSection7.FinallyweconcludethepaperinSection8.MOBWandBVGEDistributionsInthissectionwewillbrie\rydiscussabouttheMOBWandBVGEdistributions.Wewillbeusingthefollowingnotationsthroughoutthepaper.ItisassumedthattheunivariateWeibulldistributionwiththeshapeparameter �0andthescaleparameter�0hasthefollowingprobabilitydensityfunction(PDF),forx�0;fWE(x; ;)= x 1ex ;(1)thecorrespondingcumulativedistributionfunction(CDF)andsurvivalfunction(SF)areWE(x; ;)=1ex ;andSWE(x; ;)=ex ;(2)respectively.FromnowonaWeibulldistributionwiththePDFasgivenin(1)willbedenotedbyWE( ;).TheGEdistributionwiththeshapeparameter �0andthescaleparameter�0,hasthePDFfGE(x; ;)= ex1ex 1:(3)4 ThecorrespondingCDFandSFareGE(x; ;)=1ex ;andSGE(x; ;)=11ex (4)respectively.AGEdistributionwiththePDFgivenin(3)willbedenotedbyGE( ;).2.1MOBWDistributionSupposeU0WE( ;0),U1WE( ;1)andU2WE( ;2)andtheyareindependentlydistributed.De neX1=minfU0;U1gandX2=minfU0;U2g,thenthebivariatevector(X1;X2)hastheMOBWdistributionwithparameters ;0;1;2,anditwillbedenotedasMOBW(),where=( ;0;1;2).If(X1;X2)MOBW(),thentheirjointSFtakesthefollowingform,forz=maxfx1;x2g,SMOBW(x1;x2;)=P(X1�x1;X2�x2)=P(U1�x1;U2�x2;U0�z)=SWE(x1; ;1)SWE(x2; ;2)SWE(z; ;0):(5)ThejointPDFof(X1;X2)canbewrittenasfMOBW(x1;x2;)=f1W(x1;x2;)if0x1x2f2W(x1;x2;)if0x2x1f0W(x;)if0x1=x2=x;(6)wheref1W(x1;x2;)=fWE(x1; ;1)fWE(x2; ;0+2)f2W(x1;x2;)=fWE(x1; ;0+1)fWE(x2; ;2)f0W(x;)=0 0+1+2fWE(x; ;0+1+2):NotethatthefunctionfMOBW()maybeconsideredtobeadensityfunctionforMOBWdistribution,ifitisunderstoodthatthe rsttwotermsaredensitieswithrespecttotwo5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (a) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 1 1.5 2 2.5 3 3.5 4 (b) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 (c) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 (d)Figure1:SurfaceplotsoftheabsolutecontinuouspartofthejointPDFofMOBWfor( ;1;2;3):(a)(2.0,1.0,1.0,1.0)(b)(5.0,1.0,1.0,1.0)(c)(2.0,2.0,2.0,2.0)(d)(1.0,1.0,1.0,1.0).dimensionalLebesguemeasure,andthethirdtermisadensityfunctionwithrespecttoaonedimensionalLebesguemeasure,seeforexampleBemisetal.(1972).ItisclearthatMOBWdistributionhasanabsolutecontinuouspartonf(x1;x2);0x11;0x21;x1=x2g,andasingularpartonf(x1;x2);0x11;0x21;x1=x2g.ThesurfaceplotoftheabsolutecontinuouspartofthejointPDFhasbeenprovidedinFigure1fordi erentparametervalues.ItisimmediatethatthejointPDFofMOBWdistributioncantakevarietyofshapes,therefore,itcanbeusedquitee ectivelyinanalyzingsingularbivariatedata.Thefollowingprobabilitieswillbeusedlaterinderivingtheasymptoticprobabilityof6 correctselection.If(X1;X2)MOBW(),thenp1W=P[X1X2]=10y0fWE(x; ;1)fWE(y; ;0+2)dxdy=1 0+1+2;(7)p2W=P[X1�X2]=101yfWE(x; ;0+1)fWE(y; ;2)dxdy=2 0+1+2;(8)p0W=P[X1=X2]=0 0+1+210fWE(z; ;0+1+2)dz=0 0+1+2:(9)2.2BVGEDistributionSupposeV0GE( 0;),V1GE( 1;)andV2GE( 2;).De neY1=maxfV0;V1gandY2=maxfV0;V2g.Thenthebivariaterandomvector(Y1;Y2)issaidtohaveBVGEdistributionwithparameters 0; 1; 2;,anditwillbedenotedbyBVGE(),where=( 0; 1; 2;).ItisimmediateY1GE( 0+ 1;),andY2GE( 0+ 2;).ThejointCDFof(Y1;Y2)canbeexpressedasfollowsforv=minfy1;y2g.BVGE(y1;y2;)=P(Y1y1;Y2y2)=P(V1y1;V2y2;V0v)=(1ey1) 1(1ey2) 2(1ev) 0:(10)Inthiscasealso,thejointCDFofY1andY2canbewrittenasfBVGE(y1;y2;)=f1G(y1;y2)if0y1y2f2G(y1;y2)if0y2y1f0G(y)if0y1=y2=y;(11)wheref1G(y1;y2;)=fGE(y1; 0+ 1;)fGE(y2; 2;)7 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 (a) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.02 0.04 0.06 0.08 0.1 0.12 (b) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 (c) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 (d)Figure2:SurfaceplotsoftheabsolutecontinuouspartofthejointPDFofBVGEfor( 1; 2; 3;):(a)(1.0,1.0,2.0,1.0)(b)(1.0,1.0,1.0,4.0)(c)(5.0,5.0,5.0,1.0)(d)(0.5,0.5,0.5,1.0).f2G(y1;y2;)=fGE(y1; 1;)fGE(y2; 0+ 2;)f0G(y;)= 0 0+ 1+ 2fGE(y; 0+ 1+ 2;):ItisclearthattheBVGEdistributionhasalsoasingularpartandanabsolutecontinuouspartsimilarlyastheMOBWdistribution.ThesurfaceplotofthejointPDFoftheBVGEisprovidedinFigure2,fordi erentparametervalues.ItisclearthattheshapeofthejointPDFofBVGEandMOBWareverysimilar.Thefollowingprobabilitieswillbeneededlater.If(Y1;Y2)BVGE(),thenp1G=P[Y1Y2]=10y0fGE(x; 0+ 1;)fGE(y; 2;)dxdy= 2 0+ 1+ 2;(12)8 p2G=P[Y1�Y2]=101yfGE(x; 1;)fGE(y; 0+ 2;)dxdy= 1 0+ 1+ 2;(13)p0G=P[Y1=Y2]= 0 0+ 1+ 210fWE(z; 0+ 1+ 2;)dz= 0 0+ 1+ 2:(14)DiscriminationProcedureSupposef(X11;X21);;(X1n;X2n)gisarandombivariatesampleofsizengeneratedeitherformaBVGE()orfromaMOBW().Basedontheabovesample,wewanttodecidefromwhichdistributionfunctionthedatasethasbeenobtained.Weusethefollowingnotationsandsetsfortherestofthepaper;I0=f(x1i;x2i);x1i=x2i=xi;i=1;ng,I1=f(x1i;x2i);x1ix2i;i=1;ng,I2=f(x1i;x2i);x1i&#x-278;&#x.066;x2i;i=1;ng,I=I0[I1[I2,n0=I0,n1=I1andn2=I2,n0+n1+n2=n.Itisassumedthatn0=0,n1=0,andn2=0.Let=( 0; 1; 2;)bethemaximumlikelihoodestimators(MLEs)of,basedontheassumptionthatthedatahavebeenobtainedfromBVGE().Similarly,let=( ;0;1;2),betheMLEofbasedontheassumptionthatthedatahavebeenobtainedfromMOBW().Notethat( 0; 1; 2;)and( ;0;1;2)areobtainedbymaximizingthecorrespondinglog-likelihoodfunction,sayL1( 0; 1; 2;)andL2( ;0;1;2)respectively.Notethatherethelog-likelihoodoftheBVGEcanbewrittenas;L1()=(n0+2n1+2n2)ln+n1ln( 0+ 1)+n1ln 2(15)+( 0+ 11)Xi21ln(1ex1)+( 21)Xi21ln(1ex2)+n2ln 1+n2ln( 0+ 2)+( 11)Xi22ln(1ex1)+( 0+ 21)Xi22ln(1ex2)+n0ln 0+( 0+ 1+ 21)Xi20ln(1ex)(Xi20xi+Xi21[2x1i+Xi21[2x2i)(16)9 andthelog-likelihoodofBVWEcanbewrittenasL2()=(n0+2n1+2n2)ln +n1ln1+n2ln2+n0ln0+n1ln(0+2)+n2ln(0+1)+( 1)Xi20lnx1i+Xi21[2lnx2i+Xi20lnxi1Xi21[2x 1i+Xi20x i2Xi21[2x 2i+Xi20x i0Xi22x 1i+Xi21x 2i+Xi20x i:(17)Weusethefollowingdiscriminationprocedure.Considerthefollowingstatistics:T=L2( ;0;1;2)L1( 0; 1; 2;):(18)IfT�0,wechooseMOBWdistribution,otherwisewepreferBVGEdistribution.Itmaybementionedthat( 0; 1; 2;)and( ;0;1;2)areobtainedbymaximizing(16)and(17)respectively.Computationallybotharequitechallengingproblems,andtomaximizedirectlyoneneedstosolveafourdimensionaloptimizationproblemineachcase.InboththecasesEMalgorithmcanbeusedquitee ectivelytocomputetheMLEsoftheunknownparameters.SeeforexampleKunduandGupta(2009)andKunduandDey(2009)forBVGEandMOBWdistributionsrespectively.Ineachcase,itinvolvessolvingjustaone-dimensionaloptimizationproblemateach`E'step,andboththemethodsworkquitewell.InthenextsectionweprovidetheasymptoticdistributionofT,whichwillhelptocomputetheasymptoticPCS.AsymptoticDistributionsInthissection,weusethefollowingnotations.Foranyfunctions,f1(U)andf2(U),EBVGE(f1(U)),VBVGE(f1(U))andCovBVGE(f2(U);f1(U))willdenotethemeanoff1(U),thevarianceoff1(U),andthecovarianceoff1(U)andf2(U)respectively,undertheassumptiontheUBVGE().Similarly,wede neEBVWE(f1(U)),VBVWE(f1(U))andCovBVWE(f2(U);f1(U))10 asthemeanoff1(U),thevarianceoff1(U)andthecovarianceoff1(U)andf2(U)respec-tively,undertheassumptionthatUBVWE().Wehavethefollowingtwomainresults:Theorem1:UndertheassumptionthatdataarefromMOBW( ;0;1;2)thedistribu-tionofTasde nedin(18),isapproximatelynormallydistributedwithmeanEMOBW(T)andvarianceVMOBW(T).TheexpressionsofEMOBW(T)andVMOBW(T)areprovidedbelow.ProofofTheorem1:ItisprovidedintheAppendix. NowweprovidetheexpressionsforEMOBW(T)andVMOBW(T).Wedenotelimn!1EMOBW(T) n=AMMOBW;andlimn!1EMOBW(T) n=AVMOBW:Therefore,limn!11 nEMOBW(T)=AMMOBW=EMOBW[ln(fMOBW(X1;X2;))ln(fBVGE(X1;X2;))]limn!11 nVMOBW(T)=AVMOBW=VMOBW[ln(fMOBW(X1;X2;))ln(fBVGE(X1;X2;))]:NotethatbothAMMOBWandAVMOBWcannotbeobtainedinexplicitform.Theyhavetobeobtainednumerically,andtheyarefunctionsofp1W,p2W,p3W,and.Moreoveritshouldbementionedthatthemisspeci edparameterasde nedinLemma1(Appendix)alsoneedstobecomputednumerically.Theorem2:UndertheassumptionthatdataarefromBVGE()thedistributionofTasde nedin(18),isapproximatelynormallydistributedwithmeanEBVGE(T)andvarianceVBVGE(T).TheexpressionsofEBVGE(T)andVBVGE(T)areprovidedbelow.ProofofTheorem2:ItisprovidedintheAppendix. NowweprovidetheexpressionsforEBVGE(T)andVBVGE(T).Inthiscasealsowedenotelimn!1EBVGE(T) n=AMBVGEandlimn!1VBVGE(T) n=AVBVGE:11 Therefore,limn!11 nEBVGE(T)=AMBVGE=EBVGE[ln(fMOBW(X1;X2;))ln(fBVGE(X1;X2;))]limn!11 nVBVGE(T)=AVBVGE=VBVGE[ln(fMOBW(X1;X2;))ln(fBVGE(X1;X2;))]:Asmentionedbefore,herealsobothAMBVGEandAVBVGEcannotbeobtainedinexplicitform.Theyhavetobeobtainednumerically,andtheyarealsofunctionsofp1G,p2G,p3G,and.Themisspeci edparameterasde nedinLemma2(Appendix)alsoneedstobecomputednumerically.Basedontheasymptoticdistributions,itispossibletocomputetheprobabilityofcorrectselection(PCS)forboththecases.MisspecifiedParameterEstimatesEstimationofInthiscaseitisassumedthatthedatahavebeenobtainedfromMOBW()andwewouldliketocompute,themisspeci edBVGEparameters,asde nedinLemma1.Suppose(X1;X2)MOBW(),considerthefollowingevents:1=fX1X2g,2=fX1&#x-454;&#x.245;X2gand0=fX1=X2g.Moreover,1Aistheindicatorfunctiontakingvalue1atthesetAand0otherwise.Therefore,canbeobtainedastheargumentmaximumofEMOBW(ln(fBVGE(X1;X2;)))=1()(say),where1()=ln()+p1Wln( 0+ 1)+p1Wln 2+( 0+ 11)EMOBW(ln(1eX1)1A1)+( 21)EMOBW(ln(1eX2)1A1)EMOBW((X1+X2)1A1)+p2Wln 1+( 11)EMOBW(ln(1eX1)1A2)+p2Wln( 0+ 2)+( 0+ 21)EMOBW(ln(1eX2)1A2)EMOBW((X1+X2)IA2)+( 0+ 1+ 21)EMOBW(ln(1eX)1A0)EMOBW(X1A0)+p0Wln 0:12 Weneedtomaximize1()withrespecttofor xed,tocompute,numerically.Clearly,isafunctionof,butwedonotmakeitexplicitforbrevity.Sincemaximizing1()involvesafourdimensionaloptimizationprocess,wesuggesttouseanapproximateversionofit,whichcanbeperformedveryeasily,andworksquitewellinpractice.Theideabasicallycamefromthemissingvalueprinciple,andithasbeenusedbyKunduandGupta(2009)indevelopingtheEMalgorithm.Wesuggesttousethefollowing1(),the`pseudo'versionof1(),asfollows:1()=(p0W+u2p1W+w2p2W)ln 0+(p0W+2p1W+2p2W)ln+( 0+ 1+ 21)Eln(1eX1)1A0(E(X11A0)+E((X1+X2)1A1[A2))+(u1p1W+p2W)ln 1+(w1p2W+p1W)ln 2+( 0+ 11)Eln(1eX1)1A1+( 0+ 21)Eln(1eX2)1A2+( 21)Eln(1eX2)1A1+( 11)Eln(1eX1)1A2:Hereu1=0 0+2;u2=2 0+2;w1=0 0+1;w2=1 0+1;(19)p1W;p2W;p3Waresameasde nedbefore.TheexplicitexpressionsoftheexpectedvaluesareprovidedintheAppendix.Notethat1()isactually1()=limn!11 nEflpseudo( 0; 1; 2;(X1i;X2i;i=1;;n)g:(20)Herelpseudo()isthe`pseudo'log-likelihoodfunctionofthecompletedataset,asdescribedinKunduandGupta(2009).Moreover,ithasthesameformasinKunduandGupta(2009),butsincehereitisassumedthat(X1i;X2i)MOBW( ;1;2;3),thereforetheexpressionsofu1;u2;w1;w2areas(19),andtheyaredi erentthanKunduandGupta(2009).Nowthemaximizationof1()canbeperformedasfollows.Notethatforagiven,themaximizationof1()withrespectto 0, 1and 2canoccurat 0()=p0W+u2p1W+w2p2W E(ln(1eX1)1A0)+E(ln(1eX1)1A1)+E(ln(1eX2)1A2);13 1()=u1p1W+p2W E(ln(1eX1)1A0)+E(ln(1eX1)1A1)+E(ln(1eX1)1A2) 2()=p1W+w1p2W E(ln(1eX2)1A0)+E(ln(1eX2)1A2)+E(ln(1eX2)1A1);respectively,and nallymaximizationof1()canbeobtainedbymaximizingpro lefunc-tion,namely,1( 0(); 1(); 2();)withrespecttoonly.Therefore,itinvolvessolvingaonedimensionaloptimizationproblemonly.EstimationofInthiscaseitisassumedthatthedatahavebeenobtainedfromBVGE()andwecompute,themisspeci edMOBWparameters,asde nedinLemma2.Inthiscase,canbeobtainedastheargumentmaximumofEBVGE(ln(fMOBW(X1;X2;)))=2()(say),where2()=(p0G+2p1G+2p2G)ln +p1Gln1+p2Gln2+p0Gln0+p1Gln(0+2)+p2Gln(0+1)+( 1)[EBVGE(lnX11A1)+EBVGE(lnX11A2)]+( 1)[EBVGE(lnX21A1)+EBVWE(lnX21A2)+EBVWE(lnX11A0)]1[EBVWE(X 11A1)+EBVWE(X 11A2)+EBVWE(X 11A0)]2[EBVWE(X 21A1)+EBVWE(X 21A2)+EBVWE(X 11A0)]0[EBVWE(X 11A2)+EBVWE(X 21A1)+EBVWE(X 11A0)]Inthiscasealsoweneedtomaximize2()withrespecttonumericallytoobtain,fora xed.Clearly,dependson,andwedonotmakeitexplicitforbrevity.Similarly,asbeforesincemaximizationof2()involvesafourdimensionaloptimizationproblem,wesuggesttousethefollowingapproximationof2().Wesuggesttouse2()=(p0G+2p1G+2p2G)ln +( 1)E(lnX11A0+(lnX1+lnX2)1A1[A2)0E(X 11A0+X 11A2+X 21A1)+(p0G+a1p1G+1p2G)ln01E(X 1)+(p1G+a2p2G)ln12E(X 2)+(p2G+2p1G)ln1:14 Herea1= 1 0+ 1;a2= 0 0+ 2;b1= 2 0+ 2;b2= 0 0+ 2;p0G;p1G;p2Garesameasde nedbefore.Theexpressionsofthedi erentexpectationsareprovidedintheAppendix.Itmaybesimilarlyobservedasbeforethat2()=limn!11 nE(lpseudo( ;0;1;2(X1i;X2i);i=1;;n));(21)where(X1i;X2i)BVGE( 0; 1; 2;).Theexplicitexpressionoflpseudo()isavailableinKunduandDey(2009).Themaximizationof2()withrespecttocanbeperformedquiteeasily.For xed themaximization2()withrespectto1,2and0,canbeobtainedfor1=p1G+2p2G E(X 1)2=p2G+a2p1G E(X 2)0=p0G+a1p1G+1p2G E(X 11A0)+E(X 11A2)+E(X 21A1);respectively,and nallythemaximization2()canbeperformedbymaximizingthepro lefunction2( ;0( );1( );2( ))withrespectto only.NumericalResultsInthissectionweperformsomenumericalexperimentstoobservehowtheseasymptoticre-sultsworkfordi erentsamplesizes,andfordi erentparametervalues.Allthesecomputa-tionsareperformedattheIndianInstituteofTechnologyKanpur,usingIntel(R)Core(TM)2QuadCPUQ95502.83GHz,3.23GBRAMmachines.TheprogramsarewritteninRsoft-ware(2.8.1).Theycanbeobtainedfromtheauthorsonrequest.WecomputePCSbased15 onMonteCarlosimulation(MC),andalsobasedontheasymptoticresults.Wereplicatetheprocess1000,timesandcomputetheproportionofcorrectselection.ForcomputingthePCSbasedonasymptoticresults, rstwecomputethemisspeci edparametersandbasedonthosemisspeci edparameterswecomputethePCS.Case1:ParentDistributionisMOBWInthiscaseweconsiderthefollowingparametersets;Set1: =2.0,0=1.0,1=1.0,2=1.0;Set2: =1.5,0=1.0,1=1.0,2=1.0;Set3: =1.5,0=0.5,1=0.5,2=0.5;Set4: =1.5,0=2.0,1=1.0,2=1.5,anddi erentsamplesizesnamelyn=20,40,60,80,100.Foreachparametersetandforeachsamplesize,wehavegeneratedthesamplefromMOBWdistribution.ThenwecomputetheMLEsoftheunknownparametersandtheassociatedlog-likelihoodvalues,assumingthatthedataarecomingfromMOBWorBVGEdistribution.IncomputingtheMLEsoftheunknownparameters,wehaveusedtheEMalgorithmassuggestedinKunduandDey(2009)andKunduandGupta(2009)respectively.Finallybasedonthemaximizedlog-likelihoodvalueswedecidewhetherwehavemadethecorrectdecisionornot.Wereplicatetheprocess1000times,andcomputetheproportionofcorrectselection.Theresultsarereportedinthe rstrowsoftheTables1to4.Table1:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet1. n 20 40 60 80 100 MC 0.9255 0.9808 0.9953 0.9987 0.9997 AD 0.9346 0.9837 0.9956 0.9987 0.9996 Nowtocomparetheseresultswiththecorrespondingasymptoticresults, rstwecomputethemisspeci edparametersforeachparameterset,andtheyarepresentedinthefollowing16 Table2:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet2. n 20 40 60 80 100 MC 0.9255 0.9808 0.9953 0.9987 0.9997 AD 0.9212 0.9772 0.9928 0.9976 0.9992 Table3:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet3. n 20 40 60 80 100 MC 0.9073 0.9749 0.9914 0.9979 0.9989 AS 0.9204 0.9767 0.9926 0.9975 0.9992 Table5.IneachcaseweneedtocomputeAMMOBWandAVMOBW,asde nedinTheorem1.SincetheexactexpressionsofAMMOBWandAVMOBWarequitecomplicated,wehaveusedsimulationconsistentestimatesofAMMOBWandAVMOBW,whichcanbeobtainedveryeasily.ThesimulationconsistentestimatorsofAMMOBWandAVMOBWareobtainedusing10,000replications,andtheyarereportedinTable6NowusingTheorem1,basedontheasymptoticdistributionofT,thediscriminationstatistic,wecomputetheprobabilityofcorrectselection,i:e:P(T�0)fordi erentsamplesizes.TheresultsarereportedinthesecondrowsofTables1to4foralltheparametersets.Itisveryinterestingtoobservethatforthebivariatecase,evenforsmallsamplesizestheprobabilityofcorrectselectionsareveryhigh,andtheasymptoticresultsmatchverywellwiththesimulatedresults.Case2:ParentDistributionisBVGEInthiscaseweconsiderthefollowingparametersets;Set5: 0=1.5, 1=2.0, 2=1.0,=1.0;Set6: 0=1.0, 1=1.0, 2=1.0,=1.0;17 Table4:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet4. n 20 40 60 80 100 MC 0.8834 0.9587 0.9843 0.9952 0.9973 AS 0.8996 0.9648 0.9866 0.9947 0.9979 Table5:Misspeci edparametervaluesfordi erentparametersets. Set 1 2 0  1 1.5098 1.5098 1.6228 2.81 2 0.8853 0.8853 0.9458 2.35 3 0.8908 0.8908 0.9600 1.49 4 1.3393 1.0782 0.7362 3.10 Set7: 0=2.0, 1=2.0, 2=2.0,=1.0;Set8: 0=1.5, 1=1.5, 2=1.5,=1.0,andthesamesamplesizesasinCase1.InthiscasewegeneratethesamplefromBVGE,andusingthesameprocedureasbeforewecomputetheproportionofcorrectselection.Theresultsarereportedinthe rstrowsoftheTables7to10.Nowtocomputetheasymptoticprobabilityofcorrectselection, rstwecomputethemisspeci edparametersassuggestedinsection5,andtheyarereportedinTable11.WealsoreportsimulatedconsistentestimatesofAMBVGEandAVBVGEinTable12.Nowsimilarlyasbefore,basedontheasymptoticdistributionofT,asprovidedinTheo-rem2,wecomputetheprobabilityofcorrectselectioninthiscase,i:e:P(T0)fordi erentsamplesizes.WereporttheresultsinthesecondrowsofTables7to10foralltheparametersets.Inthiscasealso,itobservedthattheasymptoticresultsmatchextremelywellwiththesimulatedresults.18 Table6:AMMOBWandAVMOBWfordi erentparametersets. Set AMMOBW AVMOBW 1 0.2346 0.4823 2 0.1982 0.3936 3 0.2297 0.4317 4 0.1762 0.4317 Table7:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet5. n 20 40 60 80 100 MC 0.9195 0.9797 0.9935 0.9986 0.9993 AS 0.9330 0.9830 0.9953 0.9986 0.9996 7DataAnalysis:Inthissectionwepresenttheanalysisofarealdatasetforillustrativepurposes.ThesedataarefromtheNationalFootballLeague(NFL),AmericanFootball,matchesplayedonthreeconsecutiveweekendsin1986.Ithasbeenoriginallypublishedin`WashingtonPost'.Inthisbivariatedataset,thevariablesarethe`gametime'tothe rstpointsscoredbykickingtheballbetweengoalposts(X1)andthe`gametime'tothe rstpointsscoredbymovingtheballintotheendzone(X2).Thesetimesareofinteresttoacasualspectatorwhowantstoknowhowlongonehastowaittowatchatouchdownortoaspectatorwhoisinterestedonlyatthebeginningstagesofagame.Thedata(scoringtimesinminutesandseconds)arerepresentedinTable13.Wehaveanalyzedthedatabyconvertingthesecondstothedecimalminutes,i:e:2:03hasbeenconvertedto2.05.ThevariablesX1andX2havethefollowingstructure:(i)X1X2meansthatthe rstscoreisa eldgoal,(ii)X1=X2meansthe rstscoreisaconvertedtouchdown,(iii)19 Table8:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet6. n 20 40 60 80 100 MC 0.9001 0.9701 0.9892 0.9962 0.9984 AS 0.9153 0.9741 0.9914 0.9970 0.9989 Table9:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet7. n 20 40 60 80 100 MC 0.9189 0.9811 0.9944 0.9987 0.9994 AS 0.9347 0.9837 0.9955 0.9987 0.9996 X1�X2meansthe rstscoreisanunconvertedtouchdownorsafety.Inthiscasethetiesareexactbecauseno`gametime'elapsesbetweenatouchdownandapoint-afterconversionattempt.Therefore,itisclearthatinthiscaseX1=X2occurswithpositiveprobability,andsomesingulardistributionshouldbeusedtoanalyzethisdataset.Ifwede nethefollowingrandomvariables:U1=timeto rst eldgoalU2=timeto rstsafetyorunconvertedtouchdownU0=timeto rstconvertedtouchdown,then,X1=minfU0,U1gandX2=minfU0,U2g.Therefore,(X1;X2)hasasimilarstructureastheMarshall-Olkinbivariateexponentialmodel.CsorgoandWelsh(1989)analyzedthedatausingtheMarshall-Olkinbivariateexponentialmodelbutconcludedthatitdoesnotworkwell,becauseX2maybeexponentialbutX1isnot.InfactitisobservedthattheempiricalhazardfunctionsofbothX1andX2areincreasingfunctions.SincebothMOBWandBVGEcanhaveincreasingmarginalhazardfunctions,we t20 Table10:ProbabilityofcorrectselectionbasedonMonteCarlo(MC)simulationsandbasedonasymptoticdistribution(AD)forparameterSet8. n 20 40 60 80 100 MC 0.9096 0.9768 0.9929 0.9975 0.9991 AS 0.9299 0.9816 0.9947 0.9984 0.9995 Table11:Misspeci edparametervaluesfordi erentparametersets. Set 0 1 2 5 1.6199 0.1732 0.1137 0.1992 6 1.4199 0.2575 0.2418 0.2418 3 1.8200 0.1123 0.1050 0.1050 8 1.6199 0.1665 0.1553 0.1553 boththemodelstothedataset.ForMOBWdistributionusingEMalgorithmassuggestedinKunduandDey(2009),wecomputetheMLEsoftheunknownparametersas =1.2889,0=11.2073,1=8.3572,2=0.4720,andtheassociated95%con denceintervalsare(1.0372,1.5406),(5.7213,16.6932),(2.5312,14.1831),(-0.4872,1.4314)respectively.Thecorrespondinglog-likelihoodvalueis47.8041.IncaseofBVGEdistributionusingtheEMalgorithmassuggestedinKunduandGupta(2009),weobtainedtheMLEsoftheunknownparametersas 0=1.1628, 1=0.0558, 2=0.5961,=9.5634,andtheassociated95%con denceintervalsare(0.6991,1.6266),(-0.0205,0.1322),(0.2751,0.9171)and(6.5298,12.5970)respectively.Thecorrespondinglog-likelihoodvalueis38.0042.Therefore,basedonthelog-likelihoodvaluesweprefertousetheMOBWmodelratherthanBVGEmodeltoanalyzethisdataset.Nowtocomputetheprobabilityofcorrectselectioninthiscase,weperformnon-parametricbootstrap.Thehistogramofthebootstrapsampleofthediscriminationstatisticsispro-videdinFigure3.Basedononethousandbootstrapreplications,itisobservedthatthe21 Table12:AMMOBWandAVMOBWfordi erentparametersets. Set AMMOBW AVMOBW 5 0.2224 0.4406 6 0.1967 0.4095 3 0.2316 0.4692 8 0.2128 0.4157 X1 X2 X1 X2 X1 X2 2:03 3:59 5:47 25:59 10:24 14:15 9:03 9:03 13:48 49:45 2:59 2:59 0:51 0:51 7:15 7:15 3:53 6:26 3:26 3:26 4:15 4:15 0:45 0:45 7:47 7:47 1:39 1:39 11:38 17:22 10:34 14:17 6:25 15:05 1:23 1:23 7:03 7:03 4:13 9:29 10:21 10:21 2:35 2:35 15:32 15:32 12:08 12:08 7:14 9:41 2:54 2:54 14:35 14:35 6:51 34:35 7:01 7:01 11:49 11:49 32:27 42:21 6:25 6:25 5:31 11:16 8:32 14:34 8:59 8:59 19:39 10:42 31:08 49:53 10:09 10:09 17:50 17:50 14:35 20:34 8:52 8:52 10:51 38:04 Table13:AmericanFootballLeague(NFL)dataprobabilityofcorrectselectionis0.98.ConclusionInthispaperwehaveconsidereddiscriminationbetweentwosingularbivariatedistributionsnamely,MOBWandBVGEdistributions.Boththedistributionshavesingularpartandabsolutecontinuouspart.Thedi erenceofthemaximizedlog-likelihoodvalueshasbeenusedasthediscriminationstatistic.Wehaveobtainedtheasymptoticdistributionofthe22 -10-5 0 5 10 15 20 Figure3:Histogramofthebootstrapsampleofthediscriminationstatistic.discriminationstatistic,whichcanbeusedtocomputetheasymptoticprobabilityofcor-rectselection.MonteCarlosimulationsareperformedtoseethebehavioroftheproposedmethod.ItisknownthatthediscriminationbetweenWeibullandgeneralizedexponentialdistributionsisquitedicult,seeGuptaandKundu(2003),butinthispaperitisobservedthatthediscriminationbetweenMOBWandBVGEisrelativelymucheasier.Evenwithsmallsamplesizestheprobabilityofcorrectselectionisquitehigh.Moreovertheasymptoticprobabilityofcorrectselectionmatchesverywellwiththesimulatedprobabilityofcorrectselectionevenformoderatesamplesizes.Wehaveperformedtheanalysisofadataset,andcomputedtheprobabilityofcorrectselectionusingnon-parametricbootstrapmethod.Althoughwedonothaveanytheoreticalresults,itseemsnon-parametricbootstrapmethodalsocanbeusedquitee ectivelyincomputingtheprobabilityofcorrectselectioninthiscase.Moreworkisneededinthisdirection.Appendix:ToproveTheorem1,weneedthefollowingLemma1.Herea:s:!meansconvergesalmostsurely.Lemma1:UndertheassumptionthatdataarefromBVWE( ;0;1;2),asn!1,we23 have(i) a:s:! ,0a:s!0,1a:s!1and2a:s!2wherefor=( ;0;1;2)EMOBW(ln(fMOBW(X1;X2;)))=maxEMOBW(ln(fMOBW(X1;X2;)))(22)(ii) 0a:s! 0, 1a:s! 1, 2a:s! 2,a:s!,wherefor=( 0; 1; 2;),EMOBW(ln(fBVGE(X1;X2;)))=maxEMOBW(ln(fBVGE(X1;X2;)))(23)Itmaybenotedthatmaydependon,butwedonotmakeitexplicitforbrevity.(iii)IfwedenoteT=L2( ;0;1;2)L1( 0; 1; 2;)thenn1 2[TEMOBW(T)]isasymptoticallyequivalentton1 2[TEMOBW(T)]ProofofLemma1:ItisquitestandardanditfollowsalongthesamelineastheproofofLemma2.2ofWhite(1982),anditisavoided. ProofofTheorem1:UsingCentrallimittheoremandpart(ii)ofLemma1,itfollowsthatn1 2[TEBVWE(T)]isasymptoticallynormallydistributedwithmeanzeroandvari-anceVMOBW(T).Therefore,usingpart(iii)ofLemma1,theresultimmediatelyfollows. ToproveTheorem2,andforde ningthemisspeci edparameterweneedthefollowingLemma2,whoseproofissameastheproofofLemma1. Lemma2:SupposethedatafollowBVGE( 0; 1; 2;),asn!1,wehave(i) 0a:s:! 0, 1a:s:! 1,^ 2a:s:! 2and^!whereEBVGE(ln(fBVGE(X1;X2;)))=maxEBVGE(ln(fBVGE(X1;X2;)))(24)24 (ii) a:s! ,0a:s!0,1a:s!1,2a:s!2,where=( ;0;1;2)EBVGE(ln(fMOBW(X1;X2;)))=maxEBVGE(ln(fMOBW(X1;X2;)))(25)Herealsodependon,butwedonotmakeitexplicitforbrevity.(iii)IfwedenoteT=L2( ;0;1;2)L1( 0; 1; 2;)thenn1 2[TEBVGE(T)]isasymptoticallyequivalentton1 2[TEBVGE(T)]ProofofTheorem2:AlongthesamelineastheProofofLemma1,italsofollowsusingLemma2. ThefollowingLemmaswillbeusefulincomputingthedi erentexpectedvaluesneededin1()andin2().Here1A0,1A1and1A2aresameasde nedbefore.LemmaA.1:LetW0GE( 0+ 1+ 2;),W1GE( 0+ 1;),W2GE( 0+ 2;)and(X1;X2)BVGE( 0; 1; 2;).Ifg()isanyBorelmeasurablefunction,thenE(g(X1)1A1)=E(g(W1))+ 0+ 1 0+ 1+ 2E(g(W0)):E(g(X1)1A2)= 1 0+ 1+ 2E(g(W0)):E(g(X1)1A0)=E(g(X2)1A0)= 0 0+ 1+ 2E(g(W0)):E(g(X2)1A1)= 2 0+ 1+ 2E(g(W0)):E(g(X2)1A2)=E(g(W2))+ 0+ 2 0+ 1+ 2E(g(W0)):ProofofLemmaA.1:SeeKunduandGupta(2009). LemmaA.2:LetZ0WE( ,0+1+2),Z1WE( ,0+1),Z2WE( ,0+2)and(X1;X2)MOBW( ;0;1;2).Ifg()isanyBorelmeasurablefunction,thenE(g(X1)1A1)=1 0+1+2E(g(Z1)):25 E(g(X1)1A2)=E(g(Z1))0+1 0+1+2E(g(Z0)):E(g(X1)1A0)=E(g(X2)1A0)=0 0+1+2E(g(Z0)):E(g(X2)1A1)=E(g(Z2))0+2 0+1+2:E(g(X2)1A2)=2 0+1+2E(g(Z2)):ProofofLemmaA.1:TheycanbeobtainedalongthesamelineasinLemmaA.1. References[1]Atkinson,A.(1969),\Atestfordiscriminatingbetweenmodels",Biometrika,vol.56,337-341.[2]Atkinson,A.(1970),\Amethodfordiscriminatingbetweenmodels(withdiscus-sions)",JournaloftheRoyalStatisticalSociety,Ser.B.vol.32,323-353.[3]Bain,L.J.andEnglehardt,M.(1980),\ProbabilityofcorrectselectionofWeibullversusgammabasedonlikelihoodratiotest",CommunicationsinStatistics-The-oryandMethods,vol.9,375-381.[4]Bemis,B.,Bain,L.J.andHiggins,J.J.(1972),\Estimationandhypothesistestingfortheparametersofabivariateexponentialdistribution",JournaloftheAmericanStatisticalAssociation,vol.67,927-929.[5]Cox,D.R.(1961),\Testsofseparatefamiliesofhypotheses",ProceedingsoftheFourthBerkleySymposiumonMathematicalStatisticsandProbability,Berkley,UniversityofCaliforniaPress,105-123.[6]Cox,D.R.(1962),\Furtherresultsontestsofseparatefamiliesofhypotheses",JournaloftheRoyalStatisticalSociety,SerB,vol.24,406-424.26 [7]Csorgo,S.andWelsh,A.H.(1989),\TestingforexponentialandMarshall-Olkindistribution",JournalofStatisticalPlanningandInference,vol.23,287-300.[8]Dey,A.K.andKundu,D.(2009),\Discriminatingamongthelog-normal,Weibullandgeneralizedexponentialdistributions",IEEETransactionsonReliability,vol.58,416-424.[9]Dey,A.K.andKundu,D.(2010),\Discriminatingbetweenthelog-normalandlog-logisticdistributions",CommunicationsinStatistics-TheoryandMethods,vol.39,280-292.[10]Gupta,R.D.andKundu,D.(2003),\DiscriminatingbetweenWeibullandgener-alizedexponentialdistributions",ComputationalStatisticsandDataAnalysis,vol.43,179-196.[11]Gupta,R.D.andKundu,D.(2006),\OnthecomparisonofFisherinformationoftheWeibullandGEdistributions",JournalofStatisticalPlanningandInference,vol.136,3130-3144.[12]Gupta,R.D.andKundu,D.(2007),\Generalizedexponentialdistribution:ex-istingmethodsandrecentdevelopments",JournaloftheStatisticalPlanningandInference,vol.137,3537-3547.[13]Kotz,S.,Balakrishnan,N.andJohnson,N.(2000),ContinuousMultivariateDis-tributions:ModelsAndApplications,WileyandSons,NewYork.[14]KunduD.,Dey,A.K.(2009),\EstimatingtheparametersoftheMarshall-OlkinbivariateWeibulldistributionbyEMalgorithm",ComputationalStatisticsandDataAnalysis,vol.53,956-965.27 [15]Kundu,D.andGupta,R.D.(2009),\Bivariategeneralizedexponentialdistribu-tion",JournalofMultivariateAnalysis,vol100,581-593.[16]Marshall,A.W.,Meza,J.C.andOlkin,I.(2001),\Candatarecognizeitsparentdistribution?",JournalofComputationalandGraphicalStatistics,vol.10,555-580.[17]White,H.(1982),\NonlinearRegressiononCross-sectionData",Econometrica,vol.48,721-746.28