/
J-PARC Heavy-Ion Program (J-PARC-HI) J-PARC Heavy-Ion Program (J-PARC-HI)

J-PARC Heavy-Ion Program (J-PARC-HI) - PowerPoint Presentation

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
404 views
Uploaded On 2017-05-12

J-PARC Heavy-Ion Program (J-PARC-HI) - PPT Presentation

H Sako ASRCJPARC JAEA for JPARC HeavyIon Collaboration TGSW2016 Session 6 Universe Evolution and Matter Origin Tsukuba 2016921 Outline Introduction HI acceleration ID: 547387

parc beam gev high beam parc high gev rate rich density energy fragments event ring baryon decay agev muon ion hadron target

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "J-PARC Heavy-Ion Program (J-PARC-HI)" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

J-PARC Heavy-Ion Program (J-PARC-HI)

H.

Sako (ASRC/J-PARC, JAEA) for J-PARC Heavy-Ion CollaborationTGSW2016 Session 6 "Universe Evolution and Matter Origin” Tsukuba, 2016/9/21

OutlineIntroductionHI accelerationPhysics goalsExperimental designSummary and prospect

1Slide2

J-PARC-HI Collaboration

88 members : Experimental and

Theoretical Nuclear Physicists and

Accelerator Physicists ExperimentH. Sako, S. Nagamiya, K. Imai, K. Nishio, S. Sato, S. Hasegawa, K. Tanida, S. H. Hwang, H. Sugimura, Y. Ichikawa K. Ozawa, K. H. Tanaka, S. Sawada, M. Chu, G. David, T. Sakaguchi, K. Shigaki, A.

Sakaguchi, T. Chujo, S. Esumi, Y. Miake, O. Busch, T. Nonaka, B. C. Kim, H. Masui, K. Sato, M. Inaba, T. Gunji, H. Tamura, M. Kaneta, K. Oyama

, Y. Tanaka, H.

Hamagaki

, M. Naruki,S. Yokkaichi, T. Hachiya, T. R. Saito, X. Luo, N. Xu, B. S. Hong, J. K. Ahn, E. J. Kim, I. K. Yoo,M. Shimomura, T. Nakamura, S. Shimansky, J. Milosevic, M. Djordjevic, L. Nadjdjerdj, D. Devetak, M. Stojanovic, P. Cirkovic, T. Csorgo, P. Garg, D. MishraTheoryM. Kitazawa, T. Maruyama, M. Oka, K. Itakura, Y. Nara, T. Hatsuda, C. Nonaka, T. Hirano,K. Murase, K. Fukushima, H. Fujii, A. Ohnishi, K. Morita, A. Nakamura, Y. AkamatsuAcceleratorH. Harada, P. K. Saha, M. Kinsho, Y. Liu, J. Tamura, M. Yoshii, M. Okamura, A. KovalenkoASRC/JAEA, J-PARC/JAEA, J-PARC/KEK, Tokyo Inst. Tech, Hiroshima U, Osaka U, U Tsukuba, Tsukuba U Tech, CNS, U Tokyo, Tohoku U, Nagasaki IAS, Kyoto U, RIKEN, Akita International U, Nagoya U, Sophia U, U Tokyo, YITP/Kyoto U, Nara Women’s U, KEK, BNL, Mainz U, GSI Central China Normal U, Korea U, Chonbuk National U, Pusan National U, JINR, U Belgrade, Wigner RCP, KRF, Stony Brook U, Bhaba Atomic Research Centre, Far Eastern Federal U

2Slide3

Goals of J-PARC HI Project

-physics of extremely dense matter-

RHIC/LHC discovered QGP at high T and low

rHowever, no direct evidence for the critical point and phase boundaries discovered. At J-PARC, the highest density matter in the lab can be created.5-10 r

0 ~ neutron star coreGoals at J-PARCStudies of phase structuresHadron/nuclear properties at high density Utilizing world’s highest intensity HI beams

3

LHC

RHIC

GSI-SIS

m

B

J

-PARC

Location unknown theoreticallySlide4

4

NICA (collider)

CBM

FAIR SIS-100

RHIC BES II

NN

NICA

(fixed target)

Highest baryon density

HI experiments for high density physics

Aiming at world’s highest

Beam rate

of 10

11

Hz

Interaction r

ate

1

0

8

Hz

Note

: experimental limitation not considered(2019-2020)

(2022-)

(2020-)

J-PARC

(2017-)

SIS-100 beam rate

~5x

10

9

Hz

Ion species

p, …, Au, U

Beam energy

1-

19 A GeV

Extremely important as accelerator science

Collision energy √S [GeV]

Interaction rate [Hz]Slide5

HI accelerator scheme

RCS

(H

-  p)0.4  3 GeVMR330 GeV (p)H-

Linac: 0.4 GeV

MLF

p to NU proton (existing)p to HDU86+62  735 AMeVstripping

U

92+

0.73

11.2

AGeV

p/

HI

to HD

HI (under plan)Figures: Not to scaleHI boosterU

35+→U66+20  67 AMeV

stripping

stripping

HI

Linac

U

35+

20

AMeV

5

400MeV p

Parallel

oper

HI(MR)

p

(MLF)

50m

Booster

Linac

50mSlide6

Observables for QCD phase structures

DileptonsPenetrating probes of dense matterModification of

r/w/f linked to chiral symmetry restorationHadron measurements (high statistics)

Event-by-event fluctuationsCollective flow (searching for 1st order transition)CharmJ/y, D,…Sensitive to initial dense matter? Photons (real and virtual)Thermal radiations from QGP6Slide7

Approaching to even higher density

In addition to centrality, event selection with large strangeness and net baryon numberu

tilizing extremely high statistics at J-PARC

7A. Ohnishi,J. Phys. Conf. Ser. 668 (2016) 012004

J. RandrupPRC82 (2010) 034902Critical pointMixed phase

Unstable

region

Beam-energy scan(no event selection)

Baryon-rich events

High

m

region can be studied

by selecting baryon rich eventsSlide8

Net-proton fluctuations

8X. Luo, Quark Matter 2015

M.A.

Stephanov,PRL107, 052301 (2011).

J-PARCTheoryEbe fluctuations : Probe to search for the critical pointw/ higher-order fluctuationsEnhancement of 4th-order fluctuations at low energies Indications of the critical point?Slide9

NA60

In+In, 158AGeV/cHADES Ar+KCl

1.76AGeV/cCERES Pb+Au

40AGeV/cCERES Pb+Au 158AGeV/c CERES S+Au 200 AGeVPHENIX Au+Au 200 AGeV MB (Phys. Rev. C 93, 014904)

STAR Au+AuLow-mass dileptonsMaximum low mass enhancement aroundJ-PARC energies?Dielectrong conversion at low mass (background)Dimuon

p

,K

 m decay (background)Higher rate beam can be usedHigh statistics at J-PARCMoment analysisDirect comparison to theoretial models (e.g. QCD sum rules, related to quark and gluon condensate) Hayano and Hatsuda, RMP82, 29499J-PARC●NA60 In+In, 158AGeV/cHADES Ar+KCl 1.76AGeV/cCERES Pb+Au 40AGeV/cCERES Pb+Au 158AGeV/c CERES S+Au 200 AGeVPHENIX Au+Au 200 AGeV (PRC81,034911(2010))STAR Au+AuHighest baryon density 5-8GeV? (J. Randrup, PRC74(2006)047901)

 

T.

Galatyuk

,

EM probes

of

Strongly Interacting

Matter

ECT

*, Trento

2007

(PHENIX data updated)

Baryon density

J.

Randrup

, PRC

74

047901

(2006)

Low-mass

dilepton

enhancement factor

Measured / cocktail in m=0.2-0.8

GeV

/c

2

Slide10

|

S|>=3 hypernuclei

Extension of Hadron nuclear physics to high density with HI collisions

10HI experiment

Neutron StarChiral restorationdilepton in A+AChiral restoration dilepton in p+A

(E16)

Meson beam experiments

YN YY interactionsNeutron star densityEOSExotic hadronsPentaquark (E19)H-dibaryon (E42)Exotic hadrons(distinguish structure by production yield)Hypernuclei|S|<=2 (E10,E13)Normal nuclear density太陽質量の2倍⇒硬いEOSY,N三体力?Quark-hadron phase transition?Kaonic nuclei:K-pp(E15, E27)中性子過剰ハイパー核中性ハイパー核: nnL, nnLL

L

*

Cluster

Strangelet

(strange quark matter)

Collective

f

low

2-particle correlation (HBT)Slide11

Particle production rates

11

Beam

: 1010 Hz0.1 % target  Min-bias event rate 107HzIn 1 month experiment:r,w,fee 109

-1011Hypernuclei 103 -1011HSD calculations in FAIR Baseline Technical Report (Mar 2006)A. Andronic, PLB697 (2011) 203

Dilepton

Hypernuclei

AGSStrangelets: P. Braun-Munzinger J.Phys.G21 (1995)L17Y, pt spectraEvent selectionsMeasurementsand Search10-13 sensitivity at J-PARCSlide12

Experimental challenges

High rate capabilityFast detectorsSilicon trackers, GEM trackers, …Extremely fast DAQMin-bias event rate = 10MHz

 Triggerless

DAQ Large acceptance (~4p)Coverage for low beam energies Maximum multiplicity for e-b-e fluctuationsElectron measurementField free region for RICH near the target Toroidal magnet spectrometer12

(CBM<30o, beam energy>=8AGeV/c)Slide13

3.2

m

Neutron counter

EMCAL

ZCAL

Beam

RICH

4

m

Muon

Tracker

R=1

m

Top

View

13

Toroid

coils

0.25

m

0.5

m

1.4

m

0.65

m

1.90m

TOF

SVD

ZCAL

4.4m

Centrality

MC

+ ZCAL

Multiplicity

counter

C

5

F

12

radiator

p<3.4GeV/c

e-

p

separation

EMCAL (

e,

g

ID)

PbWO

4,

15X

0

JHITS

m

p

separation

Fe absorbers

+trackers

GEM trackers

Neutron detectorSlide14

Hypernuclear spectrometer (JHYPER)

14

H. Tamura,

Remei Workshop, 10 Aug 2016, Tokai, Japan

At 10

7

Hz interaction rate

Track rate in TPC : 9.3x106 HzTrigger rate : 4.0x103 HzExperiment with full beam rate may be feasible!Slide15

Summary and Prospect

15

Rich physics for high density matter in HI collisions

Acceleration at 4x1011/cycle by adding

a linac and a booster to RCS and MRLarge acceptance toroidal spectrometer for lepton/hadron measurementsHypernuclear spectrometer utilizing full beam intensityProspectsAccelerator R&D of ion source, linac, and boosterDetector R&D with the high-p beamline experiments at J-PARC (E16, E50) and heavy-ion experimentalistsMRPC-TOF (Tsukuba, JAEA, KEK) in J-PARC E16 (p+A) DAQ (JAEA, Nagasaki IAS), Collaboration with ALICE Online-Offline Computing (O2)

W

hite paper completed in June

2016  (http://asrc.jaea.go.jp/soshiki/gr/hadron/jparc-hi/index.html)LOI submitted to J-PARC PAC in Jul 2016Discussions in J-PARC and in nuclear physics community are going on Goal : Start earliest in 2025Slide16

backup

16Slide17

Hypernuclear

spectrometer

Search for|S|>=3

HypernucleiStrangeletHypernuclear production at ybeam Life time Magnetic moment17

12C Target12C BeamCollimator (W)

1

m

Dipole magnet0.5mPrecession magnet TOFChargecounterZCAL1.5mBdL = 6Tm Precession angle ~ 68o (assuming mL

)

1

m

Trigger counter

for

decay

p

-

TPC

hypernucleus

p

-

nucleus

Fragment separation at TPC

Ideas b

ased on

M.

Asakawa

et al, KEK Report 2000-11

T. R. Saito et al,

HypHI

Letter of Intent, 2005

Beam

bg

c

t

(

L

) ~

1.6m

Total

BdL

= 6Tm

Precession angle ~ 68

o

(assuming

m

L

)

JHIPER

Horizontal

positions at

TPC

All particles

At 10

7

Hz interaction rate

Track rate in TPC :

9.3x10

6

Hz

Trigger rate :

4.0x10

3

Hz

Experiment with full beam rate may be feasible!

PRC54

, R15 (1996)

PRC76

011901(R

)

(2007)

3

He

p

-

3

L

H

3

He

+

p

-

C+C at 15

AGeV

/c

JAM-1.622 (RQMD/S mode)

+ GEANT4

Y. Nara, et al

, Phys. Rev. C61,024901(1999)

M.

Isse

, et al,

Phys.Rev

. C72 (2005) 064908

Side

Top

viewSlide18

Hyperon c

orrelation in HI collisions (STAR)

18

STAR, PRL114 (2015) 022301

(Morita et alPRC91 (2015) 024916)

Search for H-

dibaryon

and study of baryon-baryon interactions from LL momentum correlationXN, WN correlation also possibleX- and W multiplicities = 0.6/0.03 at 10 AGeVWp : K. Morita et al, Phys.Rev. C94 (2016) 031901LL correlation functionQS+BB interactionNagaraSTARSTARSlide19

Advantage of J-PARC HIC program:

high-luminosity/statistics Example: event selection by

Net-baryon number② Total-strange numbervarious event selections

Beam-energy scan

(no event selection)

Baryon-rich events

average transverse energy High m region can be studied by selecting baryon rich events

faster

increase

non-monotonic

behavior

as evidence of 1st.

tr

?

Baryon-rich

events

19

Courtesy of M. Kitazawa

Event selectionSlide20

Possible HI spectrometer location

20

High-p beam line

High-p beam lineSpace for HI spectrometerRadiation shieldSlide21

Search for strangelet at AGS-E886

~10-7 sensitivity (~ ybeam)

21

PID of fragments is done with TOF and Z measurements

TOFA. Rusek, PRC54 R15

Search region

dE

/dx vs brelationp=1.8GeV/cJ-PARC20mAGS D6 Beamline (30m)Z=1Z=2Z=3Z=4HI beamHadrons/nucleiDESlide22

Beam

View

RICH

Muon

Tracker

22

Neutron counter

EM

CAL

Toroid coils

12-fold coils

B

f

v

ariations ~+-20%

Coils = insensitive

area

JHITS

J-PARC Heavy Ion

Toroidal SpectrometerSlide23

Distinguishing exotic hadron structures in HIC

S. Cho et al (ExHIC collab), PRC84 (2011) 064910

23

Yields depend on the system size assuming a quark coalescence model (at RHIC or LHC)Application to J-PARC?e.g. L(1405) is KbarN or 5-quark state? Slide24

24Slide25

25Slide26

26Slide27

AGS D6 beamline

27Slide28

EOS from collective flow

To measure EOS is one of the ultimate goals of nuclear experimentsFlow as a function of sqrt(s) may have important information of EOSDanielewicz et al., Science 298 (2002) 1592

28Slide29

Spectrometer performance

Acceptance >= 78 %p/K separation 2.5GeV/c (2.5

s)

Assuming TOF resolution of 50 ps29Forward trackers Acceptance = 77.5

%Acceptance = 64.2%Acceptance = 95.0%Dp/p

p

(GeV/c)

U+U at 10AGeV/c with JAM + GEANT4Assumption for simplicity Half-spherical toroidal shapeUniform Bf fieldNo dead area due to coilsH. Sako, B.C. Kimp+pyym2 (GeV/c2)p/Z (GeV/c)Slide30

Reconstructed

dilepton

spectra

heegh’ee

greewee

f

ee

p0eegm+m- cocktail (500 M events)No K,p weak decaysqee>5o2o<q<80opT>0.1 GeV/cVery PreliminaryGeneratedReconstructedLike-sign pairsLike-sign mixedSignalDielectrons

30

Very Preliminary

q

ee

>2

o

2

o

<

q

<80op

T>0.1GeV/cDimuonsB/S~23(CERES)B/S~4(J-PARC)wp0eehmmgh’

mmg

r

mm

w

mm

f

mm

w

p

0

mm

e

+

e

-

cocktail (8.6 M events)

No

g

external conversionSlide31

Comments on S=-3 nuclei

Smallest triple L nuclei will be 14CLLL

, since 3rd

L should be in p-shell which is only bound larger than A=11 (13CL) .Possible smaller s=-4 nuclei can be; 4He+LL+X0 system ~10-7

A. J.

Baltz

,

C. B. Dover et al, PLB325 (1994) 7Slide32

Dileptons at J-PARC energy

Penetrating probes of dense matterLow Mass Rangein-medium modification of vector mesons (link to chiral symmetry restoration)

Intermediate Mass RangeDD is suppressed

Sensitive to QGP thermal radiation?32Axel Drees

T. Sakaguchi, JHI2014Talk by T. Hatsuda (20th)Slide33

PBM’s Thermal model

33Slide34

34Slide35

ZCAL

Beam

Muon

Tracker

Top View

35

0.5

m1.2mGEM trackers1.4m

Dimuon

trigger

A positive and a negative particles after

7

l

absorbers

At the interaction rate of 10MHz

Dimuon trigger rate (background)

=3x104 Dimuon trigger rate (signal)

~104(forward muon tracker (

q<33o))Experiment with full beam rate may be feasible!SVD

0.4 m

Pb

absorbers

Dimuon

specialized spectrometer (preliminary)

0.4

m

0.5

m

Dipole

Magnetic

field

Fe

absorbersSlide36

Hadron physics in HI collisions

Two particle correlationsYN, YY correlations in high baryon densityCollective flow

(related to EOS?)Exotic hadrons

L(1405), pentaquarksDibaryons (H-dibaryon, WN, DD,…)Kaonic nucleus (K-pp,…)Hadron structures  distinguished with production yields compared to quark/hadron coalescence mechanisms? S. Cho et al (ExHIC Collaboration) PRC 84, 064910Hypernuclei

36J-PARC experiments with p/K beamsJ-PARC E16 p+ASlide37

37Slide38

Pictures of

h

eavy-ion collisions

Lower energy

(J-PARC)

P

beam

= 10-20 AGeV/c

Nuclei stop

Nucleons pile up

High energy (LHC/RHIC)

Center of mass energy >=200

AGeV

 

Nuclei

penetrate

each other

Quark-gluon plasma

3/30/2012

38

Hadron seminar @J-PARC

K.

Itakura

, T.

Sakaguchi

Very hot and low density matter

Hot and dense matterSlide39

QCD sum rule and spectral function

39http://macdls.lbl.gov/DLS_WWW_Files/DLSWorkshop/proceedings.html

Comment by Tetsuo Hatsuda

International Conference on Soft Dilepton ProductionLBNL, 1997See also, Hatsuda, Hayano, RMP82, 2949 スペクトル自身よりも、積分値の方がより直接的に実験と

QCD凝縮を比較できるWith integrated values (moments), QCD condensates can be compared to the experimental data more directly than with the spectral function itself.Courtesy of M. KitazawaSlide40

JAM RQMD/S mode (v1.622)

Inelastic hadron-hadron collisions are modeled by the resonance and string productions and their decays (similar to the RQMD and UrQMD models). Nuclear mean field is simulated based on the framework of the simplified version of relativistic Quantum Molecular Dynamics.

40Slide41

g

external conversionMaterial budget from the target to photon L/X0 ~ 4.32%

Np0 = 240

e+ and e- from g conversion~Np0 * L/X0 * 2 = 21 / event 41detectorR(cm)thickness

MaterialL/X0Target(0.1%)00.051mmAu(1/2) (0.508mm)

1.52%

SVD

7.50.3mmSi(0.2mm)+polyimide1.24%GEM Photon detector1800.025mm0.100mm0.027mmKapton(286mm)Mylar(285mm)Cu(14.35mm)G-10 (1.5mm)1.52%4.32%Slide42

Muon weak decay

Muon multiplicity (U+U 10AGeV/c, JAM)Nm+(p>1.5GeV/c)=2.07Nm-(p>1.5GeV/c)=2.41N(

m++m

-) = 4.48Weak decay rejection by track matching~ 80%The expected muon weak decay contamination4.48*(1-0.8) = 0.89 / event42Slide43

Muon ID performance

43

p

+ survival probability~2x10-3~70%

Track matching before and after the first absorberm+ efficiencyp(GeV/c)p(GeV/c)D

y

(mm)

Dx(mm)low p cut-off~1.5GeV/c6lint absorberSlide44

44

KenIchi

Imai

,

J-PARC

HI meeting (2013/4/24)Slide45

Hypernuclear physics with HI

GoalsDiscovery of new hypernuclei and extension of hypernuclear chart

S=-1,-2,-3 hypernucleiProton-rich and Neutron-rich hypernuclei

Can be done in mid-rapidity or beam/target rapidityIdentification with weak decay to a (light) nucleus + p-Study of weak decays at beam rapidityWith meson beams, due to short decay length these measurements are difficultlife time measurementMesonic decay e.g. 4ΛH→ π−+4He (4He ground state) standard way to identify a hypernucleusNon-mesonic weak decayΛp →

pn (p,n : high momentum) the rest nucleus is exited state, and will break.Measurements of residuesMagnetic moment Never measured!Sensitive to hyperon wave function inside hypernucleusSpin and angular momentum structureSpin-dependent YN interaction 45Slide46

Strange meson/baryons

Systematic energy scan below the “horn” at ~8 GeV

There is almost no

X, W measurements46

A. Andronic et al, Nucl. Phys. A 837 (2010) 65J-PARCSlide47

Hypernuclei

Maximum yield at J-PARCCoalescence of high-density baryonsS=-3 HypernucleiPrecise secondary vertex reconstruction (mid rapidity)

47

A. Andronic, PLB697 (2011) 203 J-PARCSlide48

Kaonic nuclei production in HIC

Andronic, PBM, et al, NPA 765 (2006) 211–225Evidence of K-

pp state at J-PARC (E27) (p++d  K

++K-pp), but no other states yetStatistical thermal model calculationMaximum yields at J-PARC energy range48

J-PARCJ-PARCSlide49

49

Existing 3 GeV and 50 GeV

synchrotrons HI injector and injection section in RCS are necessary

Large acceptance(transverse e>486πmmxmrad, longitudinal Dp/p>1%)⇒ Multi-turn injection of high-intensity HI beamProven performance for high-intensity proton beam Current status of MRSlowly extracted proton beam at 30 GeV 2.5x1013

/cycle (6s)1.3x1014 (2017) Well understood accelerator performance Optics, lattice imperfections, acceleration, beam lossAdvantages of RCS/MR for HI beam11/21/2014Slide50

Heavy-ion acceleration

RCS beam loss simulationU86+

ion 4×1011

/cycleBeam loss < 0.05%HI injection section50

H

-

H

-

stripping

injection

Stripper

foil

H

-

H

+

Extraction

section

RF section

HI injection

Inj. beam

dump

HI

From H

-

Linac

From HI Booster

Collimators

section

Proton

to MLF

Proton

/

HI

to MR

Pulse

Bending (

PB

)

f

or beam switching

to MLF

to MR

RCS ring

No any unexpected beam losses.

Beam survival > 99.95% even

f

or 1.1×10

11

/b of U

86+

ions

Beam loss localized at ring collimator.Slide51

51Slide52

52Slide53

53Slide54

Simulation for

U86+acceleration in the RCS

54

Time [ms]

Code: ORBIT-3DSteps:(1) Single particle w/o SC(2) Multi-particle w/ SC● BM, QM, Sextuples are kept unchanged as optimized for 1MW proton (

for MLF).

Those can’t be changed pulse-to-pulse.

● rf patterns are differently used. Upgrades might necessary. (may not be a big issue.) Injection energy: 61.8 MeV/uExtraction energy: 735 MeV/u (1) Successfully confirmed by the single particle simulation.rf patterns(1)Slide55

HI LINACとHI

Booster RingLINAC とbooster

を同じ建屋に建設- スペースとコスト

の節約boosterからの出射エネルギーは可変- RCSへの様々なイオン種に対応boosterの設計- 大強度のビーム蓄積RCSには injection kickerのみ追加必要- コスト節約

5550m

HI booster

長:131.6mHI LINACSlide56

Charmed particles

c-c produced in the early stage of collisions

D,J/

y may be modified Probe of high density stateJ-PARC energies close to the production thresholdsD (5.07 AGeV),J/y (4.77 AGeV)May be possible with increased beam energy 12 19 AGeV/c√s= 4.96.2GeV (U)Enhancement due to multi-step processes in A+A?

56CBM Physics Book,W. Cassing, E. L. Bratkovskaya andA. Sibirtsev, Nucl. Phys. A 691 (2001) 753Slide57

Event-by-event fluctuations

Search for the critical pointand phase boundaryw/ 3rd and 4th-order fluctuations

Direct comparison to lattice-QCD may be possibleNet-chargeNet-proton

StrangenessHigh statistics in J-PARCWide y-pT acceptance required57STAR PRL112 (2014) 032302

S

 

 Slide58

Exotic particles in HI collisions

DibaryonHLL

p-p

p-pd*(2380)dp+p-Kaonic nucleusK-ppLpp-pp

ResonancesK*(892)pKD(1232)ppS(1385)LpL(1520)

pK

-

X(1530)XpWLK-X-Lp-Penta uarksQ+(uudd sbar)pKsQ+++(uuuu sbar)pp+p+Q0(uddd sbar)pK-Ns(uudd ubar)LKS5(udds ubar)LpS5(uuds dbar)pK0barπ-pφn (udd ssbar)58Slide59

59

“d*

resonance”

70 MeV

Total cross section pn  d

0

0 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011NN*(1440)Slide60

60

Total cross section

pN  d

 P. Adlarson et. al Phys. Lett. B721 (2013) 229

 

 

 Slide61

Simulated di-electron spectrum

(preliminary)Based on p0 spectra of

JAM Other hadrons m

T-scaledb<1fm (0.25% centrality)Momentum resolution 2%Electron efficiency 50%(No detector response)1011 events⇔100 kHzx 1 month runningeisolation

= rejection efficiency of close opening angle Dalitz pair8/28/201561Calculations by T. Gunji and T. Sakaguchif

w

r

p0Solenoid+Dipole setupSlide62

62

X. Luo, CPOD2014Slide63

Ring reconstruction

Assumed 2x2mm2 pad size of photon detectorTransform to spherical photon detector surface coordinateHough transformation : r = 32.4mm (b

=1 ring)1 JAM U+U event

63Hough clustersRing fitHough amplitude distSlide64

RICH-track association

R = 32 mmNo. of photons / ring ~ 22

64

Ring-track matching at photon detector planeRing radius vs momentumep

Number of photons / ring vs momentummpSlide65

Electron ID with p vs m2

Electron-like track cutP<3GeV/c, m2<0.017GeV/c265

Electron cocktail + GEANT

JAM + GEANTSlide66

Electron reconstruction eff

B=2TEff ~ 100% (p>=0.5 GeV/c)50% at p=0.2 GeV/c

66

generated e tracksreconstructed ringsreconstructed ring+tracksreconstructed rings/generated tracksreconstructed r

ing+tracks/generated tracksSlide67

GEANT4 (C+C @ 15AGeV/c)

Proper physics list necessary for ion-ion collisions67Slide68

JAM-1.622 (Y. Nara)

JAM-RQMD/S mode with clusteringSome physics description necessary from Nara-san15 AGeV C+C, minimum bias, 1000 events

fragment

L hypernuclei

S0 hypernucleiS- hypernucleiS+ hypernucleiNch = 33.77Nfrag=1.968NhypL=0.010Nhyp

S

=0.007

NL = 0.343hypL/L = 0.0293LH/L = 6x10-3MultiplicitySlide69

y

-pT distributions

Looks reasonableMesons peak at ymid, nucleons/fragments peak at

ybeam and ytarget69pp+

dt3He

4HeSlide70

Strategy to measure Hypernuclear weak decays

Stop produced particles except fragments and beams with a collimator after the first dipole magnet Beams pass through the hole in the TPC but a part of fragments either Z/A<0.5 or Z/A>0.5 pass the sensitive area of TPCWeak decays of

hypernucleus to pi- and a nucleus will be measured by the TPCThe secondary vertex can be reconstructed if the mother hypernucleus

passes the TPCAlternative approach is to remove beams after the target, to extract fragments with an angle with respect to the beam. In this case, we don’t need to make a hole in the TPC but measure all the fragments. An produced angle is necessary to polarize the produced hypernucleus for magnetic moment measurements70Slide71

Polar angle selection

Polar angle cut of q<10mrad with a collimator rejects most of charged particles except protons71

Charged particles

p

fragmentsq(rad)q(rad)Slide72

Bending power of magnets

X-deflection vs Z/A72

After 1

st dipole (before collimator)After 2st dipole (end of TPC)Slide73

Horizontal track positions

73

Collimator hole

All chargedfragmentsAt collimatorAt end of TPC

TPC holefragmentsCharged + fragmentIn TPCPass fragments in the collimatorBut stop other particlesMake a hole in the TPC to be insensitive

t

o the beam, but measure fragments with

Z/A<0.5 or Z/A>0.5Slide74

L magnetic moment

74

:B=0●:B in y+ direction〇:B in y- direction

Polarization measurement (from p asymmetry w.r.t the reaction plane)Precession angle vs BdLSlide75

Introduction

Hypernuclear production in heavy-ion collisions75

L

L

p

n

rapidity

L absorption infragmentstarget nucleusbeam nucleustarget fragmentsbeam fragmentsp+K+participantsspectators

coalescence

L

HI collision : Spectator-participant pictureSlide76

Vertex resolution

76

Barrel xca

Forward xcaBarrel zcaForward zca

Xca,zcaClosed approachOf the trackTo the targetPositionGood resolutionWith 4 layer40umx40umand 80umx80umpixelss=45um

s

=51um

s=54ums=62umSlide77

HypHI at GSI

6Li beam 3x 106 /s3.5-day experiment12C graphite target

8.84g/cm2interaction

prob 10%B=0.75TTR0-TR2 : SciFiBDC, SDC: drift chambers77p-

PositiveparticlefragmentsReconstructed decaysVertex cut required!Slide78

HypHI Results

Comparison of the absolute yields (dN/dy)6Li+12C minimum-bias cross section :

stotal =0.667b

N(L) = 2.6x10-3N(3LH)= s(3LH)/stotal = 3.9x10-6/0.667= 5.8x10-6N(4LH)= s(4LH)/

stotal = 3.1x10-6/0.667= 4.6x10-678

~3x10

-6

in p+Cat E16?p+C/Li+C~1/6Energy cor=3Slide79

Preliminary setup

79

Muon

tracker

Solenoid

(BL=1Tm)

2m2m0.3m30oTOF (5m from target)

TOF

EMCAL

GEM Trackers

RICH

h

adron-ID (

q

<110

o

)

e

-ID : q<30om-ID

: q<30o20o = ymid

at 10AGeV/c

1m

1m

RICH

Top View

target

Silicon pixel

/strip

trackers

GEM

trackers

Dipole

(BL=1.5Tm)

1.5mSlide80

80

Candidate TOF position?

Flight path ~1.25m?15<

q<45S0S1S2S3

S0:-15<q<15S1: 15<q<45S2: 45<q<75S3: 75<q<105S4: 105<q<135MRPC : 0.67mx0.67m at 1.25m distanceDq = Df = 30Fit in 1 section

S4Slide81

81Slide82

AGS-E886  strangelet

search using D6-line 82Slide83

10-6~-7 sensitivity (near target rapidity)

83

PID of fragments is easy if Z can be measured

TOF

AGS-E886, A. Rusek, PRC54Slide84

84

Y. Nara, Heavy

Ion Pub

2015/07/14Slide85

RICH

Design based on HADES-RICHTarget shifted to downstream of RICH centerSlightly small theta acceptance (<80deg)But rings detected at photon detector at larger theta (avoid overlap with high density charged track at the photon detectorRadiator C5F12

radiator (n=1.002)p rejection p<3.4 GeV/c

85

1

m

RICH

R=1m0.5m1.8m0.25mPhoton detectorSlide86

Toroid (12 coil configuration)

Increasing number of coils improves phi uniformity

12 coil configuration is good

86z=250mm, R at coil centerz=750mmz=1300mm

CLAS12rf(mm)B(T)Slide87

87

Support beam/pipingSlide88

Muon ID performance

(preliminary)EMCAL (~1

lint

)+Fe absorber (~1lint)x6+GEM trackers (7 layers)・Goal π suppression:1/10 of π→μ decay probability (5m,2GeV/c):4.4x10-3Π

, μ rejection performance by simulationΠ suppression = 2-4 x 10-3 m detection eff ~70%punch through p / m (p decay) = 0.16Decay rejection by track matchingP (80%), K (95%)

88

p

+m+survival probabilitySurvival probabilityp+ and decayed m+ before/after muon absorbers p (GeV/c)p (GeV/c)p (GeV/c)p+ m+ Slide89

Baryon density at different energies

89

U+U Central

JAM modelY. Nara, et al, Phys. Rev. C61,024901(1999)Slide90

Hypernuclear physics with HI

GoalsDiscovery of new hypernuclei and extension of hypernuclear chart

S=-1,-2,-3 hypernucleiProton-rich and Neutron-rich hypernuclei

Can be done in mid-rapidity or beam/target rapidityIdentification with weak decay to a (light) nucleus + p-Study of weak decays at beam rapidityWith meson beams, due to short decay length these measurements are difficultlife time measurementMesonic decay e.g. 4ΛH→ π−+4He (4He ground state) standard way to identify a hypernucleusNon-mesonic weak decayΛp →

pn (p,n : high momentum) the rest nucleus is exited state, and will break.Measurements of residuesmagnetic moment never measured!sensitive to hyperon wave function inside hypernucleusSpin and angular momentum structureSpin-dependent YN interaction Special closed-geometry setup is required We could utilize full 1010 Hz beam? Simulation study necessary90Slide91

(T , m

B ) and √sNNFocusing effect toward the critical point in the system evolution

We can measure (T,m

B) as a function of √s with fine steps (almost continuously) and systemactically with the same spectrometerSignature for the critical point = step structure?91

A. Andronic, et al, NPA837 (2010) 65-86

?

?

M. Stephanov PRL81(1998)4816Higher √sSlide92

U+U at 5

AGeV/c

92Slide93

U+U at 1 AGeV/c

93Slide94

Rapidity and pT

distributions94

10AGeV/c

5AGeV/c1AGeV/cSlide95

Photon feasibility study

0.1 T events 1<y<2, b<1fmBlue: pi0, Black: eta, Red: decay photons from pi0 and etaDirect photon signal is assumed to be 2% of background photonsStatistical error onlyNo hadron contamination, photon efficiency is taken into account.

95Slide96

E27

96

π

+

K

+

K

+ppπ+ π+d→ K+X X=K-pp→Λ

p

    

 

Σ

0

p →

Yπp

p

p

Search for a K-pp bound stateNo tagging 2p : inclusive measurementTagging 2p : exclusive measurementSlide97

Missing mass spectrum of d(

π+, K+) 97

Quasi-free B.G.

- Λ, Σ+/0, - Y*: Λ(1405), Σ(1385)+/0, - Λπ, Σπ

There are a lot of B.G (quasi-free hyperon production).

It is difficult to identify the K-pp from inclusive spectrum.In the Λ and Σ region, observed spectrum is almost consistent with simulation.“Puzzling ” Y* peak shift = -32.4 ± 0.8 MeV/c2Y*N final state interaction might explain it?Slide98

ZCAL

Beam

Muon

Tracker

Top View

98

0.5

m1.2mGEM trackers1.4m

Dimuon

trigger

A positive and a negative particles after

6

l

(7

l

)

absorbersAt forward muon tracker system (q<33

o)Interaction rate = 107Hz

Dimuon trigger rate (background)JAM(U+U, 10AGeV/c)+GEANT4=105 (after 6l)=3x104 (after 7l)Dimuon trigger rate (signal)~104The experiment may be feasible!

SVD

0.4

m

Pb

absorbers

Dimuon

specialized spectrometer (preliminary)

0.4

m

0.5

m

Dipole

Magnetic

field

Fe

absorbersSlide99

Electron reconstruction

Cherenkov ring reconstructionMatching with electron candidate tracks99

Cherenkov Ring fit

Ring-track matchingU+U at 10 AGeV, JAMx(mm)y(mm)