/
TOU Team TOU Team

TOU Team - PowerPoint Presentation

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
378 views
Uploaded On 2017-12-06

TOU Team - PPT Presentation

PLATO Consortium Campi Bisenzio 12 Dec 2016 Optical Design Mechanical Design Optics Mass TradeOff Thermal Elastic Analysis Radiation Effects Glasses Procurement 2 PLATO Consortium ID: 612811

2016 plato campi consortium plato 2016 consortium campi bisenzio december cte mass radiation optical analysis thermal tou ati6ai4v baseline

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "TOU Team" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

TOU Team

PLATO Consortium

Campi

Bisenzio

, 12 Dec 2016Slide2

Optical Design

Mechanical Design

Optics Mass Trade-OffThermal – Elastic AnalysisRadiation EffectsGlasses Procurement

2

PLATO Consortium

Campi Bisenzio, 12

December

2016Slide3

Optical Design

D. Magrin, M.

Munari, R. Ragazzoni, A. Brandeker, D. Greggio

PLATO Consortium

3

Campi Bisenzio, 12

December

2016Slide4

Reference ZEMAX File (cold environment):

PLATO-INAF-TOU-ML-001-i2.1-Baseline.zmx

24 N-TOUs2 F-TOUs

optical baseline

4

PLATO Consortium

Campi Bisenzio, 12

December

2016Slide5

Main Drivers: Performance + Mass Budget (cold environment)

optical baseline

5

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide6

Optical elements parameters (cold environment)

optical baseline

6

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide7

Lenses cut

optical baseline

7

PLATO Consortium

Campi Bisenzio, 12 December

2016

Mass before cut = 5578.5 g

Mass after cut = 5217.7 g

 Mass cut = 360.8 g (6.5%)Slide8

Window

-

The main purposes of the entrance window are to shield the following lenses from possible damaging high energy radiation and to mitigate the thermal gradient that the first optical element will experience during the launch from ground to space environment. In contrast, the presence of the window increases the overall mass by a non-negligible quantity (586 g).optical baseline

8

PLATO Consortium

Campi Bisenzio, 12

December

2016Slide9

L1 aspheric surface (cold environment)

optical baseline

9

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide10

Filters:

Deposited on window internal surface.

optical baseline10

PLATO Consortium

Campi Bisenzio, 12

December

2016

Environment

Surface Flatness

Wavelength cut off vs. FoV

Flat Field Uniformity

Cost/Risk

TOTAL

Window

surface 1

-

+

-

-

+

++/---

Window

surface 2

+

+

+

-

+

++++/-

L1

surface 1

+

+

+

-

--

+++/---

L3

surface 1/2

+

--

+

+

-

+++/---

L6

surface 2

-

+

-

--

-+/-----

N-TOUs: cut wavelengths below 500 nm.Slide11

Filters: F-TOUs transmissivity pass-band filters examples

optical baseline

11

PLATO Consortium

Campi Bisenzio, 12 December

2016

F-TOU

Blue

: 500-675 nm

F-TOU Red

: 675-1000 nm

The filter coating will consist of radiation resistant TiO2 and SiO2 layers that can

be combined

to produce a wide range of filter functions while being radiation resilient at

the same

time.Slide12

Image quality:

goal criteria is the 90% polychromatic enclosed energy in 2×2 pixels

2 with respect to centroid at nominal working temperature (-80°C) and pressure (0 atm) and a depth of focus of ± 20 µm on the FPA.

performances

12

PLATO Consortium

Campi Bisenzio, 12

December

2016Slide13

performances

13

PLATO Consortium

Campi Bisenzio, 12 December 2016

Field of View:

about 1037 degrees

2

for N-TOUs,

about 619 degrees

2

for F-TOUs

 

F-TOUs

N-TOUsSlide14

performances

14

PLATO Consortium

Campi Bisenzio, 12 December 2016

Field distortion:

about 3.84%

on the FoV edge Slide15

performances

15

PLATO Consortium

Campi Bisenzio, 12 December 2016

Vignetting:

Mechanical 3.63%, Natural (View factor, Pupil distortion) 10.48%,

Total about 14.1%Slide16

performances

16

PLATO Consortium

Campi Bisenzio, 12 December 2016

Transmissivity:

internal transmissivity + AR coatings

BOL-EOL Transmissivity (coating 0.98)

BOL-EOL Transmissivity (coating 0.985)

ADOPTION

BOL-EOL Transmissivity (coating 0.985+window 0.97)

ADOPTION

BOL-EOL Transmissivity (coating 0.99)

BOL-EOL Transmissivity (coating 0.987)

BOL-EOL Internal TransmissivitySlide17

performances

17

PLATO Consortium

Campi Bisenzio, 12 December 2016

PSFs:

HR

and LRSlide18

Ghost and Straylight Analysis

18

PLATO Consortium

Campi Bisenzio, 12 December

2016

Ghosts

Straylight

Analysis

STEP model TOU+FPA imported in ASAPSlide19

Optical tolerances

19

PLATO Consortium

Campi Bisenzio, 12 December 2016

Manufacturing and alignment tolerances:

Mimic the current

foreseen optical alignment procedure. Analysis on cold environment model.Slide20

Optical tolerances

20

PLATO Consortium

Campi Bisenzio, 12 December 2016

Manufacturing and alignment tolerances:

MF is RMS spot radiusSlide21

Optical tolerances

21

PLATO Consortium

Campi Bisenzio, 12 December 2016

Manufacturing and alignment tolerances:

90% Enclosed EnergySlide22

Optical tolerances

22

PLATO Consortium

Campi Bisenzio, 12 December 2016

Manufacturing and alignment tolerances:

90% Enclosed Energy through

focusSlide23

Optical tolerances

23

PLATO Consortium

Campi Bisenzio, 12

December

2016

Manufacturing and alignment tolerances:

90% Enclosed Energy through

focus full FoV

90% of the detected energy from a star shall fall within the following areas:

-          30 x 30 arcsec

2

(2x2px) for 50%  of the nominal FOV;

-          37.5 x 37.5 arcsec

2

(2.5x2.5px) for 95%  of the nominal FOV;

-          45 x 45 arcsec

2

(3x3px) for 99.8%  of the nominal FOV.Slide24

Mechanical Design

D. Piazza and UBE team

PLATO Consortium24

Campi Bisenzio, 12

December 2016Slide25

Mechanical Design

25

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide26

Mechanical Design

26

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide27

Mechanical Design

27

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide28

Mechanical Design

28

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide29

Mechanical Design

29

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide30

Optics Mass Trade Off

PLATO Consortium

30

Campi Bisenzio, 12 December

2016Slide31

31

PLATO Consortium

Campi Bisenzio, 12 December 2016

Optics Mass Trade Off

Item

N-TOU #1/#4

N-TOU #2/#3

F-TOU

All TOU's on S/C

CBE

[g]

Nominal

[g]

CBE

[g]

Nominal

[g]

CBE

[g]

Nominal

[g]

CBE

[g]

Nominal

[g]

Lenses

4,632

5,558

4,632

5,558

4,632

5,558

Structure

4,382

5,040

4,382

5,040

4,382

5,040

Baffles

1,265

1,518

1,350

1,620

1,155

1,386

Thermal HW

240

288

240

288

240288Tot. per TOU10,51912,40410,60412,50610,40912,272Quantity per S/C14

14

14

14

2

2

Tot. per S/C

147,266

173,657

148,456

175,085

20,818

24,544

316,540

373,286

Baffles

weight

estimation

baseline

is

the

one

presented

at

the SRR. At the moment

it

shall

be

considered

an

upper

limit

.

Thermal H/W

weight

from TOU URD

Total made for 24+2 TOU

unitsSlide32

Mass Trade off:

32

PLATO Consortium

Campi Bisenzio, 12

December 2016

MASS

D

MASS

D

MASS

[g]

[g]

[%]

BASELINE

5217.7

 

N/A

 

N/A

UPPER LIMIT

5946.8

729.1

14.0

%

EDGE VIGNETTING ×2

5103.6

-

114.1

-

2.2

%

EDGE VIGNETTING ×3

4999.1

-

218.6

-

4.2

%

PUPIL 5%

5188.8

-

28.9

-

0.6

%

PUPIL 10%

5139.6

-

78.1

-

1.5

%FOV (13.00. 13.00)4960.3-257.4-4.9%FOV (12.71, 12.71)

4851.9

-

365.8

-

7.0

%

FOV (

12.71,

12.71) + VIGNETTING

4772.8

-

444.9

-

8.5

%

L6 SUPRASIL

5312.5

94.8

1.8

%

Optics Mass Trade OffSlide33

Mass Trade off:

The assumptions

taken on the modified optical design were studied in details, with the aim to consolidate the mass saving estimate of glasses and supplement it with a mass saving estimate of the TOU mechanical structure. From this study, it turned out that the mass saving of glasses had been overestimated and was

quantified to about 266 g. For the mechanical structure, a mass saving of about 40-50 g was estimated.In conclusion, at this working level, for the studied case the overall mass saving was estimated to be around 300 g per TOU.

33

PLATO Consortium

Campi Bisenzio, 12

December

2016

Optics Mass Trade OffSlide34

Mass Trade off: Relaxing manufacturability, coating, mounting and gluing

Mass Trade Off

34

PLATO Consortium

Campi Bisenzio, 12 December

2016

Physical Aperture w.r.t. Clear Aperture > 3mm (radius)

Central thickness > 8 mm

Edge thickness > 5 mm

Mass before cut = 6372.2 g

Mass after cut = 5946.8 g

 Mass cut = 425.4 g (6.7%)

w.r.t. baseline

+ 729.1 g

+ 14.0% (<20%)Slide35

Thermal-Elastic Analysis

S.

Rockstein, S. Becker, D. MagrinPLATO Consortium

35

Campi Bisenzio, 12 December 2016Slide36

Thermal-Elastic Analysis

36

PLATO Consortium

Campi Bisenzio, 12 December 2016

Thermal

-Elastic analysis with:

Simplified model (thermal maps)

(materials CTEs, refractive indexes, curvature radii)

MultiPAS

model (-80

C steady state, ongoing)

(Thermal model, Structural model, Optical model)Slide37

Thermal-Elastic Analysis

37

PLATO Consortium

Campi Bisenzio, 12 December 2016

AA7075

CTE 23.60

53.9324

16.5440

13.5074

22.9690

22.9827

23.5181

ATi6AI4V

CTE 8.37

13.9908

10.4630

5.2951

ATi6AI4V

CTE 8.37

25.6013

5.2921

RSA 905

CTE 19.00

61.8805

8.9417

34.2537

RSA 443

CTE 13.50

40.4214

22.9786

9.9910

96.3410

ATi6AI4V

CTE 8.37

42.4605

ATi6AI4V

CTE 8.37

21.9746

T = -80°C

P = 0 atm

70.9407

2.3847

11.9952

0.6148

Invar 36

CTE 1.30

SiC

CTE 1.60

Si

CTE 4.00

STOP

FPA

WINDOW

L1

L2

L3

L4

L5

L6

Suprasil

CTE 0.51

S-FPL51

CTE 13.10

S-FPL51

CTE 13.10

N/KZFS11

CTE 6.56

Lithotec

CAF2

CTE 18.41

S-FTM16

CTE 9.00

BK7 G18

CTE 7.00

9.0000

23.0000

2.0000

26.3282

7.0000

55.1982

23.6000

66.3131

15.6000

14.9094

7.0000

110.0511

7.0000

4.0000

23.6036

12.2921

3.4415

23.7373

ATi6AI4V

CTE 8.37

RSA 443

CTE 13.50

RSA 905

CTE 19.00

ATi6AI4V

CTE 8.37

AlBeMet

CTE 12.68

Invar 36 -

Polyacetal

CTE 0.00

(Preloaded)

ATi6AI4V

CTE 8.37

ZrO

2

CTE 9.30

0.9991

11.4940

Model:

PLATO-INAF-TOU-ML-001-i2.1-Baseline-ThermalModel-i2.0Slide38

Thermal-Elastic Analysis

38

PLATO Consortium

Campi Bisenzio, 12 December 2016

AA7075

CTE 23.60

54.0597

16.5649

13.5187

23.000

ATi6AI4V

CTE 8.37

RSA 443

CTE 13.50

23.0119

23.5378

ATi6AI4V

CTE 8.37

14.0000

10.4763

5.2995

ATi6AI4V

CTE 8.37

25.6499

5.3021

RSA 905

CTE 19.00

RSA 905

CTE 19.00

61.9589

8.9492

34.2999

ATi6AI4V

CTE 8.37

RSA 443

CTE 13.50

40.4726

22.9978

10.0000

96.4631

ATi6AI4V

CTE 8.37

42.4960

21.9900

T = 20°C

P = 1 atm

71.0000

2.3850

11.9971

0.6150

Invar 36

CTE 1.30

SiC

CTE 1.60

Si

CTE 4.00

STOP

FPA

WINDOW

L1

L2

L3

L4

L5

L6

Suprasil

CTE 0.51

S-FPL51

CTE 13.10

S-FPL51

CTE 13.10

N/KZFS11

CTE 6.56

Lithotec

CAF2

CTE 18.41

S-FTM16

CTE 9.00

BK7 G18

CTE 7.00

9.0005

23.0301

2.0754

26.3737

7.0046

55.2633

23.6434

66.3759

15.6204

14.9136

7.0063

110.1814

7.0049

4.0069

23.6191

12.3147

3.4460

23.7587

AlBeMet

CTE 12.68

Invar 36 -

Polyacetal

CTE 0.00

(Preloaded)

ATi6AI4V

CTE 8.37

ZrO

2

CTE 9.30

1.0000

11.4940

ATi6AI4V

CTE 8.37

Model:

PLATO-INAF-TOU-ML-001-i2.1-Baseline-ThermalModel-i2.0Slide39

Thermal-Elastic Analysis

39

PLATO Consortium

Campi Bisenzio, 12 December 2016

A

B

C

D

CCD

 

Node

T [°C] at t = 0 hrs

T [°C] at t = 14 hrs

T [°C] at t = 3 mths

+Y B

TUBE

2000010

-79,9796

-79,9706

-79,9550

+Y C

 

2000020

-79,7792

-79,7685

-79,7579

+Y D

 

2000030

-79,6565

-79,6430

-79,6208

+X B

 

2000100

-80,1509

-80,1310

-80,0966

+X C

 

2000110

-79,8690

-79,8510

-79,8272

+X D

 

2000120

-79,7112

-79,6928

-79,6620

-Y B

 

2000190

-80,0454

-80,0308

-80,0057

-Y C

 

2000200

-79,8276

-79,8138

-79,7984

-Y D

 

2000210

-79,6788

-79,6629

-79,6366

-X B

 

2000280

-79,8900

-79,8863

-79,8801

-X C

 

2000290

-79,7375

-79,7304

-79,7266

-X D

 

2000300

-79,6240

-79,6128

-79,5950

+Y A

 

2000600

-81,3489

-81,3085

-81,2510

+X A

 

2000630

-81,8754

-81,7991

-81,6813

-Y A

 

2000660

-81,4589

-81,4013

-81,3160

-X A

 

2000690

-80,7189

-80,7035

-80,6905

-Y

CCDs

2001510

-78,4645

-78,4259

-78,3533

+X

 

2001520

-78,4713

-78,4336

-78,3624

+Y

 

2001530

-78,4315

-78,4001

-78,3405

-X

 

2001540

-78,4291

-78,3971

-78,3365

Thermal mapsSlide40

Thermal-Elastic Analysis

40

PLATO Consortium

Campi Bisenzio, 12 December 2016

Nominal

t = 0

hrs

t = 14

hrs

t = 3

mthsSlide41

Thermal-Elastic Analysis

41

PLATO Consortium

Campi Bisenzio, 12 December 2016Slide42

Thermal-Elastic Analysis

42

PLATO Consortium

Campi Bisenzio, 12 December 2016

Nominal

-80

C

-80

C, -16 µm refocusedSlide43

Radiation effects

F.

Borsa, M. GhigoPLATO Consortium

43

Campi Bisenzio, 12 December 2016Slide44

transmission loss estimates as of 21/01/2016

44

We agree in principle with CNES method,

weighting

krads

on the spectrum of the incident radiation

.

But cannot exclude completely losses >10% at low wavelengths

CNES method takes into account L2 radiation spectrum as incident on the lenses, which is not the real case: the lenses (beside window) are inside the “tube”

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide45

Update on Radiation Analysis from OHB - 08 Sep 2016

45

Radiation

for 5 different lens zones

Top+bottom

irradiation values (8 years)

Not possible to have incident proton spectrum,

but propagation inside lens

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide46

46

New darkening analysis using the new values

Considering a “mean” radiation on the lens:

Considering

worst case position of telescope

Always considered

a

2x margin

-mean value for each lens

-5 different EOL transmission values

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide47

47

EOL transmission

loss using L2 spectrum for darkening

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide48

48

Energy [

MeV

]

Fluence

How to make a more accurate analysis: estimating the radiation environment inside

the tube (still preliminary)

SPENVIS analysis, using ESA L2 radiation environment and 1mm Al shielding

SHIELDOSE2

+ inside-tube spectrum

L2 spectrum

Inside-tube spectrum

Local dose for SiO2

Mean dose for SiO2

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide49

49

With spectrum inside-tube, literature s-fpl51 data

WL (nm)

500

600

700

800

900

1000

Loss (%)

-14.0%

-6.7%

-1.9%

-0.5%

0.0%

0.0%

WL (nm)

500

600

700

800

900

1000

Loss (%)

-3.3%

-1.8%

-0.8%

-0.5%

0.0%

0.0%

Preliminary

: using ALWAYS a 2X radiation margin

With spectrum inside-tube, (confidential) new s-fpl51 data

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide50

50

Irradiation tests to be made:

N-KZSF11 - data on equivalent glass

S-FTM16 - no proper data in literature

S-FPL51 - most sensible glass, to be verified

AR

coatings

still not considered

Radiation

& Glass

Darkening

Campi Bisenzio, 12

December

2016

PLATO ConsortiumSlide51

Glasses Procurement

PLATO Consortium

51

Campi Bisenzio, 12 December 2016Slide52

52

Glasses Procurement

Campi Bisenzio, 12

December 2016

PLATO Consortium

Our experience

is based on THALES-SESO glasses procurement for the prototype

:

They had a delay on L1 glass procurement (S-FPL51) because at that time there was no blank of the required size available off-the-shelf. It was required to wait for a new melting.

No other particular problem was experienced BUT no radiation-hard version of the glasses are implemented in the prototype. For Flight Models, the current baseline foresee B-K7 G18 for L6 and Suprasil (

radiation

resilient) for the window.

Note: We required the measurement of the optical and mechanical constants (CTEs, refractive indexes in the nominal working conditions: T =-80

C and P=0

atm

).