/
Andrej bauer Andrej bauer

Andrej bauer - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
388 views
Uploaded On 2017-03-20

Andrej bauer - PPT Presentation

ComparisonofconceptsasviewedbyusexternallyandbymathematiciansinsideEffinternally Symbol External Internal N naturalnumbers naturalnumbers R computablereals allreals fNN computablemap anymap eN ID: 329632

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Andrej bauer" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Externalandinternalview Comparisonofconceptsasviewedbyus(externally)andbymathematiciansinsideEff(internally): Symbol External Internal N naturalnumbers naturalnumbers R computablereals allreals f:N!N computablemap anymap e:NA computableenumerationofA anyenumerationofA ftrue;falseg truthvalues decidabletruthvalues truthvaluesofEff truthvalues 8x computablyforallx forallx 9x thereexistscomputablex thereexistsx P_:P decisionprocedureforP PornotP Outline Introduction ConstructiveMathematics ComputabilitywithoutAxioms AxiomofEnumerability MarkovPrinciple TheTopologicalView RecursionTheorem InseparableSets Conclusion Intuitionisticlogic I Weuseintuitionisticlogic,morepreciselytheinternallanguageofatopos. I WhatisthestatusofLawofExcludedMiddle(LEM)?8p2 :(p_:p)“Foreverypropositionp,pornotp.”Inintuitionisticmathematicsitcanonlybeusedinspecialcases,whenpisdecidable. I Atthispointwedonotknowwhetherallpropositionsaredecidable,butlateroneofouraxiomswillfalsifyLEM. I ThestatusoftheAxiomofChoicewillbediscussedlater. Basicsetsandconstructions I Basicsets:;;1=fg;N=f0;1;2;:::g I Setoperations:AB;A+B;BA=A!B;fx2A p(x)g;PA I WesaythatAis I non-emptyif:8x2A:?, I inhabitedif9x2A:�. AxiomofChoice I AxiomofChoice: Everyf:ABhasachoicefunctiong:A!Bsuchthatg(x)2f(x)forallx2A. ThiswedonotacceptbecauseitimpliesLEM. I WeacceptNumberChoice: Everyf:NBhasachoicefunctiong:N!B. I WealsoacceptDependentChoice: Givenx2Aandh:AA,thereexistsg:N!Asuchthatg(0)=xandg(n+1)2h(g(n))foralln2N. Thisisaformofsimplerecursionformulti-valuedfunctions. Decidableandclassicalsets I AsubsetSAisequivalentlygivenbyitscharacteristicmapS:A! ;S(x)=(x2S): I AsubsetSAisdecidableifS:A!2,equivalently8x2A:(x2S_x62S): I AsubsetSAisclassicalifS:A! ::,equivalently8x2A:(:(x62S)=)x2S): Outline Introduction ConstructiveMathematics ComputabilitywithoutAxioms AxiomofEnumerability MarkovPrinciple TheTopologicalView RecursionTheorem InseparableSets Conclusion Non-enumerabilityofCantorandBairespace Arethereanysetswhicharenotenumerable? Yes,forexamplePN,andalso: Corollary 2NandNNarenotenumerable. Proof. 2andNdonothavethexed-pointproperty. Wehaveprovedourrstsynthetictheorem: Theorem(externaltranslationofabovecorollary) Thesetofrecursivesetsandthesetoftotalrecursivefunctionscannotbecomputablyenumerated. ProjectionTheorem Theorem(Projection) AsubsetofNisenumerableiffitistheprojectionofadecidablesubsetofNN. Proof. IfAisenumeratedbye:N!1+AthenAistheprojectionofthegraphofe,fhm;ni2NN m=e(n)g: IfAistheprojectionofBNN,denee:NN!1+Abyehm;ni=ifhm;ni2Bthenmelse?: SemidecidablesubsetsofN Theorem TheenumerablesubsetsofNarethesemidecidablesubsetsofN. Proof. AnenumerableANistheprojectionofadecidableBNN.Thenn2Aiff9m2N:hn;mi2B.Conversely,ifA2N,byNumberChoicethereisd:NN!2suchthatn2Aiff9m2N:d(m;n). TheenumerablesubsetsofN:E=N:Note:atthispointwedonotknowwhetherE=PN. Partialfunctions I Givenasingle-valuedRB,thecorrespondingf:A!PBalwaysfactorsthrougheB=fS2PB 8x;y2B:(x2S^y2S=)x=y)g: I Thuspartialmapsf:A*Barejustordinarymapsf:A!eB. I Writef(x)#whenfisdenedatx,i.e.,9y2B:y2f(x). Domainsof-partialfunctions Thesupport(a.k.a.domain)off:A*Bisfx2A f(x)#g. Proposition Asubsetissemidecidableiffitisthesupportofa-partialfunction. Proof. AsemidecidablesubsetS2AisthedomainofitscharacteristicmapS:A!=1?.Conversely,iff:A!B?is-partialthenitsdomainisthesetfx2A f(x)#g,whichisobviouslysemidecidable. Theorem(Externaltranslation) Asetissemidecidableiffitisthedomain(support)ofapartialcomputablemap. AxiomofEnumerability Axiom(Enumerability) Thereareenumerablymanyenumerablesetsofnumbers. LetW:NEbeanenumeration. Proposition andEhavethexed-pointproperty. Proof. ByLawvere,W:NE=N=NN=EN. ImmuneandSimpleSets I Asetisimmuneifitisneithernitenorinnite. I Asetissimpleifitisopenanditscomplementisimmune. Theorem ThereexistsanimmunesubsetofN. Proof. FollowingPost,considerP=fhm;ni2NN n�2m^n2Wmg,andletf:N!N?beaselectionforP.WeclaimthatS=im(f)=fn2N 9m2N:f(m)=ngissimpleandNnSimmune.Becausef(m)�2mthesetNnScannotbenite.ForanyinniteenumerablesetUNnSwithU=Wm,wehavef(m)#,f(m)2Wm=U,andf(m)2S,henceUisnotcontainedinNnS. EndofPartI Walkaroundandrestyourbrainfor10minutes. MarkovPrinciple I Ifabinarysequencea22Nisnotconstantly0,doesitcontaina1? I Forp2,doesp6=?implyp=�? I Is ::? Axiom(MarkovPrinciple) Abinarysequencewhichisnotconstantly0containsa1. Phoa'sprinciple Whatdoes!looklike? Theorem(Phoa'sPrinciple) Foreveryf:!andx2,f(x)=(f(?)_x)^f(�): TheproofusesEnumerationaxiomandMarkovPrinciple.Theprinciplesaysthat!isaretractofwith I section:f7!hf(?);f(�)i I retraction:(u;v)7!x::(u_x)^v Aconsequenceismonotonicityoff:!:ifxythenf(x)=(f(?)_x)^f(�)(f(?)_y)^f(�)=f(y): TheTopologicalView I Thetopologicalview:semidecidablesubsets=opensubsets: I istheSierpinskispace:thespaceontwopoints?,�with�fgopenandf?gclosed. I ThetopologyofAisA. I “Allfunctionsarecontinuous.” Givenanyf:A!BandU2B,thesetf�1(U)isopenbecauseitisclassiedbyUf:A!. Thegenericconvergentsequence I Theone-pointcompacticationofNisN+=fa:N!2 8n2N:anan+1g: I Anaturalnumbernisrepresentedby0;0;:::;0| {z }n;1;1;::: I Innity1correspondsto0;0;0;::: I isaquotientofN+byq:N+,q(a)=(a1)=(9n2N:an=1): Thetopologyofan!-cpo A!-cpoisaposet(P;)inwhichincreasingchainshavesuprema. Theorem AnopensubsetU:P!is I upwardclosed:x2U^xy=)y2U I inaccessiblebychains:givenachaina:N!P,ifWkak2Uthenak2Uforsomek2N. Proof. (a)givenx2Uandxy,denef:N+!Pbyf(u)=_k2Nifkuthenxelsey:Thenx=f(1)2Uhenceforsomeu1wehavey=f(u)2U.(b)Similarly,considerf(u)=Wk2Namin(k;u). Outline Introduction ConstructiveMathematics ComputabilitywithoutAxioms AxiomofEnumerability MarkovPrinciple TheTopologicalView RecursionTheorem InseparableSets Conclusion Enumerablefocalsets I Enumerablefocalsets,knownasErsovcompletesets,havegoodproperties. I AatdomainA?isfocal.ItisenumerableifAisdecidableandenumerable. I IfAisenumerableandfocalthensoisAN:N'//// NN?eN?//// AN?NA//// AN I SomeenumerablefocalsetsareN;2N?;NN?: ClassicalRecursionTheorem Corollary(ClassicalRecursionTheorem) Foreveryf:N!Nthereisn2Nsuchthat'f(n)='n. Proof. InRecursionTheorem,taketheenumerablefocalsetA=NN?andthemulti-valuedfunctionF(g)=fh2NN? 9n2N:g='n^h='f(n)g:Thereisgsuchthatg2F(g).Thusthereexistsn2Nsuchthat'n=g=h='f(n). Plotkin'sDomain2N? I Inapartiallyorderedset(P;)wesaythatxandyareincomparableifx6yandy6x. I Musttherealwaysbeamaximalelementaboveanelementofaposet? I Thesetof-partialbinaryfunctionsN!2?isapartiallyordered:fg()8n2N:f(n)g(n):ThisisPlotkin'suniversaldomain. Conclusion I Thetheme:weshouldlookforelegantpresentationsofstructureswestudy.Theycanleadtonewintuitions(anddestroyoldones). I Theseslides,andmore,atmath.andrej.com. References I Berger,U.,Totalsetsandobjectsindomaintheory,AnnalsofPureandAppliedLogic60(1993),pp.91-117 I Bridges,D.,Richman,F.,VarietiesofConstructiveMathematics,LectureNotesSer.,97,LondonMath.Soc.,1987. I Fenstad,J.,Onaxiomatizingrecursiontheory,in:J.E.Fenstadtetal.,editor,GeneralizedRecursionTheory,NorthHolland,1974pp.385-404. I Friedman,H.,Axiomaticrecursivefunctiontheory,in:Gandyetal.,editor,LogicColloquium'69(1971),pp.113-137. I Hyland,J.,Theeffectivetopos,in:A.TroelstraandD.V.Dalen,editors,TheL.E.J.BrouwerCentenarySymposium(1982),pp.165-216. I Hyland,J.,Firststepsinsyntheticdomaintheory,in:CategoryTheory,number1488inLectureNotesinMathematics,1991. I Moschovakis,Y.,Axiomsforcomputationtheories-rstdraft,in:Gandyetal.,editor,LogicColloquium'69(1971),pp.199-255. I Richman,F.,Church'sthesiswithouttears,TheJournalofSymbolicLogic48(1983),pp.797-803. I Rosolini,G.,ContinuityandEffectivenessinTopoi,Ph.D.thesis,UniversityofOxford(1986). I Spreen,D.,Oneffectivetopologicalspaces,TheJournalofSymbolicLogic63(1998),pp.185-221.