/
Introduction A useful characteristic in assessing the vitrification behavior of glassforming Introduction A useful characteristic in assessing the vitrification behavior of glassforming

Introduction A useful characteristic in assessing the vitrification behavior of glassforming - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
507 views
Uploaded On 2014-12-15

Introduction A useful characteristic in assessing the vitrification behavior of glassforming - PPT Presentation

T 14 In such an analysis the glass transition temperature is commonly taken to be the temperature at which the relaxation time assumes some arbitrary long value eg 100 s In addition to being a useful metric of te mperature sensitivity the fragility ID: 24147

such

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Introduction A useful characteristic in ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Ausefulcharacteristicinassessingthevitrificationbehaviorofglass-formingliquidsandpolymersisthe,whichreferstothesteepnessofsemi-log-arithmicplotsoftheviscosityorstructuralrelaxationtime(orforpolymers,thelocalsegmentalrelaxationtime)vs.T[1–4].Insuchananalysis,theglasstransitiontemperature,,iscommonlytakentobethetemperatureatwhichtherelaxationtimeassumessomearbitrarylongvalue,e.g.,100s.Inadditiontobeingausefulmetricoftemperaturesensitivity,thefragilityisofinterestbecauseofitscorrelationtootherpropertiesofthematerial,suchasthebreadthoftherelaxationfunction[5],thechemicalstructure[6–9],diffusionpropertiesinthesuper-cooledregime[10,11],Poisson’sratiooftheglass[12],vibrationalmotions[13],Brillouinscatteringintensities[14,15]andeventononlinearbehaviorintheglassystate[16,17].Althoughfragilitiesareusuallydeterminedfromrelaxationmeasurements(e.g.,as dTT(/)isthedielectricormechanicalrelaxationtime),thekineticsoftheglasstransition,asinfluencedbythedeparturefromequilibriumduringcooling,canberelatedtothelocalrelaxationdynamicsandhencetofragility[18].Uponcoolingthroughtheenthalpydepartsfromitsequilibriumvalue,withthenonequilibriumstateidentifiedbyitsfictivetem.Thefictivetemperatureisdefinedasthetemperatureatwhichthenonequilibriumglasswouldbeinequilibrium[19–21].Thedegreeofdeparturefromequilibrium,andhence,dependontherateof.Thus,thevariationofthefictivetempera-ture,determinedfromtheheatcapacitymeasureddur-ingheatingfollowingcoolingatvariousrates,canbeusedtodefineanenthalpicfragility.Pastwork,usingconventionalDSC,hasshowngoodcorrespondencebetweenenthalpicandrelaxationmeasuresoffragili-ties[22–24].Morerecently,TMDSChasbeenusedtostudytheglasstransition[25–27],andinparticularetal.usedMDSCtomeasureenthalpicfragilities[28,29].Intheirmethod,thefrequencyofthetemperatureoscillationwasvariedwiththeconsequentchangeinusedtocalculatefragility.Thus,thisapplicationofMDSCissimilartoalternatingcurrentcalorimetry,asdevelopedbyBirgeandNagel[30,31].AdrawbacktotheMDSCmethodofetal.isthatthefrequencyrangeislimitedtoaboutonedecade,duetotherequirementforsufficientdatasamplingoveraperiodofthetemperatureoscillation[29].InthepresentworkweutilizeMDSCtodetermineenthalpicfragilitiesfromthedependenceofthefictivetemperatureoncoolingrate.Thus,afixedoscillationfrequencyisused,andthedynamicrangeofthemethodisgovernedbytherangeofaccessiblecoolingrates.Thiscanroutinelyextendto2decades.Theexperimentswerecarriedoutonaseriesofpolychlorinatedbiphenyls(PCB),varyinginchlorineAkadémiaiKiadó,Budapest,Hungary©2006AkadémiaiKiadó,BudapestSpringer,Dordrecht,TheNetherlandsJournalofThermalAnalysisandCalorimetry,Vol.83(2006)1,87–90ENTHALPYRELAXATIONANDFRAGILITYINPOLYCHLORINATEDC.M.RolandandR.CasaliniChemistryDivision,Code6120,NavalResearchLaboratory,Washington,DC20375-5342,USAGeorgeMasonUniversity,ChemistryDepartment,Fairfax,VA22030,USAWeemploytemperaturemodulatedDSC(TMDSC)todeterminethedependenceofthefictivetemperatureoncoolingrateforaseriesofpolychlorinatedbiphenyls(PCB).Fromtheslopesofsemi-logarithmicplotsofcoolingrate.fictivetemperature,thelatternormalizedbythefictivetemperatureforanarbitrarycoolingrate,wedeterminetheenthalpicfragilities.Despitesignificantdifferencesinglasstransitiontemperatureandchemicalstructure(specificallychlorinecontent),thePCBhavethesamefragility.ThevalueofthefragilitydeterminedusingTMDSCisconsistentwiththefragilitypreviouslydeterminedusingdielectricrelaxationchlorinatedbiphenyl,fragility,glasstransition,PCB,TMDSC *Authorforcorrespondence:roland@nrl.navy.mil Downloaded from http://polymerphysics.net Downloaded from http://polymerphysics.net content.PCBarecongenerandisomermixtures,withdeterminedbytheaveragechlorinecontent.Especiallyintriguingisthatthefragility,asdeterminedbydielectricspectroscopyatatmosphericpressure,isthesameforPCBhavingchlorinecontentsrangingfrom42to62mass%[32].Thepresenceofpolar,bulkychlorineatomswouldbeexpectedtoincreaseintermolecularcooperativity,andhenceincreasethefragility[9].Thus,weuseTMDSCtodetermineenthalpicfragilitiesonthreePCB,andcomparethesevaluestotheresultsfromrelaxationmeasurements.Samplesemployedhereinwerepolychlorinatedbiphenyls(MonsantoAroclors),obtainedfromJ.SchragoftheUniversityofWisconsin.Thesamplesaredesignatedbytheirmass-averagechlorinecontent,PCB42,PCB54andPCB62.TMDSCwascarriedoutusingaTAInstrumentsQ100,usingliquidnitrogencooling.Sampleswerecooledfromtheliquidstateto50°Cbelow,at,from0.1to10Cmin.After5min,thiswasfollowedbyheatingat2Cmin.Thetemperaturemodulationwas0.5°C,witha40speriod.Theabsolutevalueoftheheatcapacitywasobtainedaftercalibrationusingasyntheticsapphire[33].InFig.1aredisplayedrepresentativeTMDSCdataforPCB42.Thecurveforthetotalheatcapacity(Fig.1a)showstheusualovershootduetoenthalpyrecovery.Thiskineticcomponentisisolatedinthenonreversingheatcapacitycurve(Fig.1c),whosepeakreflectsthedegreeofdeparturefromequilibriumduringthecooling.Integrationofthispeakyieldsanareausedtocalculatethefictivetemperature.Withdecreasingcoolingrate,thereisalargerovershootinthetotalheatflowcurve,andacorrespondingincreaseinthepeakofthenonreversingheatflow.Thereversingheatca-pacityisessentiallyinvarianttoFromthereversingheatflowcurveinFig.1b,wecalculatetheheatcapacityfortheglassandtheequilibriumliquid.Overtherangeoftemperaturemeasuredherein(ca.50°Coneithersideof),boththeglassyandliquidheatcapacitycanberepresentedbyalinearfunctionoftemperatureCabTwiththebest-fitparametersforthethreePCBgiveninTable1.Todeterminethe(cooling-ratedependent)fictivetemperatures,weconstructaparallelogram,havingverticalsidesdefinedbytherespectiveglassyandliquid.Theboundaryonthehightemperaturesideisdefinedbytheinflectionofthereversingheatflowcurve.Thisquantityisthecommon,determinedbyconventionalDSC;itsvalueisgiveninTable1foracoolingrateequalto2CminFigure2illustratesthemethodforobtainingasthelocationofthelowtemperaturesideoftheparallelogram,suchthattheareaisequalofthepeakinthecorrespondingnon-reversingheatflowcurve.Obviously,,exceptfortheliquidinequilibrium,J.Therm.Anal.Cal.,83,2006ROLAND,CASALINI Fig.1a–TotalheatcapacityforPCB42,measuredduringheatingat2Cmin,followingcoolingattherates=5,2,0.5,0.2and0.1Cmin;b–reversingcomponentoftheheatcapacity,alongwiththefitstoEq.(1)intheglassyandliquidstates;c–nonreversingheatflowcurves,whichexhibitapeakwhoseintensityisameasureofthestructuralrecoveryTable1Glasstransitiontemperature,fictivetemperature,fitsofthereversingheatcapacitydata,andfragilitydeterminedforthethreePCB/Jg/Jg/Jg/JgPCB42225.1217.50.6646.1·100.4091.19·10PCB54252.7245.00.6105.4·100.4091.41·10274.3265.00.2736.3·10 =2°Cminequation1 forwhichthefictivetemperaturebecomestheglasstransitiontemperature.Thedependenceofthefictivetemperatureoncoolingrateyieldsanapparentactivationenthalpyforstructuralrecovery[18].Theslopeofsemi-logarith-micplotsofasafunctionoftheinversefictivetem-peraturenormalizedbyareferencetemperaturede-finesanenthalpicfragility, d(Tf,refForthereferencetemperature,f,ref,weusethefictivetemperaturemeasuredforCmin.Thisisarelativelyslowcoolingrate,correspondingtoalargervalueofthestructuralrecoverytime.ResultsforthethreePCBaredisplayedinFig.3.Overtherangeofthemeasurements(twodecadesofcoolingrate),thedataareroughlylinear;thatis,isnotafunctionoftemperature(althoughitisafunctionoff,ref).ThearegiveninTable1.Wefindthatwithintheexperimentalerror,thefragilityisindependentofthechlorinecontentofthePCB,6.DielectricspectroscopyresultsonthesesamePCBhavebeenreported,andsimilarlyisthesameforthedifferentPCB[32,34].Inthesamefashionthattheenthalpicfragilityvarieswith,therelaxationmeasuresofdependonthevalueoftherelaxationtimeusedtodefinethereferencetemperature.Usingf,ref=100s),dielectricspectroscopyyields=63[32],whilef,ref=10s)=58[34].ThelargervalueofasmeasuredbyMDSCreflectsthefactthatthestructuralrecoverytimeCminislongerthan100s.(Notethatvarious‘rulesofthumb’havebeenproposed;e.g.,Cmin=38s[16]and10Cmin=100s[3]).Ifweusedataforahighercoolingratetodefinef,refCmindecreasesfrom78to69.Highercoolingrates,necessarytomorecloselymatchthedi-electricdata,lacksufficientprecisionforareliabledeterminationofMDSCprovidesafacilemeanstodeterminethefragil-ity,oneoftheimportantcharacteristicsofthesuper-cooleddynamicsofglass-formingliquids.Inconven-tionalDSCexperiments,theequilibriumheatflowisconvolutedwiththeenthalpyrecovery.MDSCavoidsthisproblem,allowingthefictivetemperaturetobedeterminedinamorestraightforwardmanner.Inthisstudy,wefoundthatforpolychlorinatedbiphenyls,thefragilityextractedfromtheenthalpykineticsisconsistentwithdeterminationsfromdielectricrelaxationspectroscopy.TheunusualfeatureofthePCBisthattheirfragilityisindependentofchlorinecontent.ThisinvarianceofthefragilityisconsistentwiththeequivalenceoftherelaxationfunctionsforthePCB[32],butsurprisinggiventheexpectedconnectionbetweenchemicalstructureandrelaxationproperties[9].Thislackofcorrelationbetweenmolecularstructureandfragilityarisesfromthefactthatthelattermetricreflectsbothvolume(density)andtemperaturecontributions.Aswehaverecentlyshowed,especiallyfornon-polymericglass-formers,suchasPCB,volumeexertsastronginfluenceonthedynamics[35,36].Moreover,arecentinvestigationfoundthatthecontributionofvolumetotheglasstransitiondynamicsincreaseswithincreasingchlorinecontentofPCB[34,37].ItisonlywhentheisochoricfragilityisJ.Therm.Anal.Cal.,83,2006ENTHALPYRELAXATIONANDFRAGILITYINPOLYCHLORINATEDBIPHENYLS Fig.2Reversingheatcapacitycurve(lowerpanel)forPCB42duringheatingat2Cmin,followingcoolingatCmin,todepictthemethodusedtocalculatethefictivetemperature,istakenastheinflectionpoint,isdefinedfromtheparallelogramhavinganareaequaltotheintegralintensityofthepeakinthenonreversingheatcapacitycurve(upperpanel) Fig.3InversecoolingrateasafunctionofinversefictivetemperaturenormalizedbyCmin–PCB54and––PCB62.TheslopesyieldthefragilitieslistedinTable1 considereddoesacorrelationwithchemicalstructurebecomeapparent.Thissuggeststhatiftheenthalpicfragilityweredeterminedfromisochoricheatcapacitymeasurements(i.e.,),differencesinthebehaviorofthevariousPCBcouldbeobserved.ItwouldbeofinterestthereforetomeasureDSCorTMDSCforthesematerialsunderelevatedpressure.ThisworkwassupportedbytheOfficeofNavalResearch.1W.Oldekop,Glastech.Ber.,30(1957)8.2W.T.LaughlinandD.R.Uhlmann,J.Phys.Chem.,76(1972)2317.3C.A.Angell,J.Non-Cryst.Solids,131–133(1991)13.4C.A.Angell,Science,267(1995)1924.5R.Bohmer,K.L.Ngai,C.A.AngellandD.J.Plazek,J.Chem.Phys.,99(1993)4201.6C.M.Roland,Macromolecules,27(1994)4242.7C.M.RolandandK.L.Ngai,Macromolecules,24(1991)5315;25(1992)1844.8C.M.Roland,Macromolecules,25(1992)7031.9K.L.NgaiandC.M.Roland,Macromolecules,26(1993)10C.A.Angell,P.H.PooleandJ.Shao,NuovoCimento,16(1994)883.11C.M.RolandandK.L.Ngai,J.Chem.Phys.,104(1996)12V.N.NovikovandA.P.Solkolov,Nature,431(2004)961.13C.A.Angell,Polymer,38(1997)6261.14T.Scopigno,G.Ruocco,F.SetteandG.Monaco,Science,302(2003)849.15U.BuchenauandA.Wischnewski,Phys.Rev.B,70(2004)092201.16I.M.Hodge,J.Non-Cryst.Solids,203(1996)164.17C.M.RolandandK.L.Ngai,J.Non-Cryst.Solids,212(1997)74.18I.M.Hodge,J.Non-Cryst.Solids,169(1994)211.19A.Q.Tool,J.Am.Ceram.Soc.,29(1946)240.20A.Q.Tool,J.Res.Natl.Bur.Stand.,37(1946)73.21J.M.Hutchinson,Prog.Polym.Sci.,20(1995)703.22C.G.Robertson,P.G.SantangeloandC.M.Roland,J.Non-Cryst.Solids,275(2000)153.23L.M.Wang,V.VelikovandC.A.Angell,J.Chem.Phys.,117(2002)10184.24C.M.Roland,P.G.Santangelo,C.G.RobertsonandK.L.Ngai,J.Chem.Phys.,118(2003)10351.25J.F.Willart,M.DescampsandJ.C.vanMiltenburg,J.Therm.Anal.Cal.,51(1998)943.26L.Carpentier,L.BourgeoisandM.Descamps,J.Therm.Anal.Cal.,68(2002)727.27J.F.Masson,S.Bundalo-PercandA.Delgado,J.Polym.Sci.Polym.Phys.Ed.,43(2005)276.28L.Carpentier,O.BustinandM.Descamps,J.Phys.DAppl.Phys.,35(2002)402.29L.Carpentier,R.DecressainandM.Descamps,J.Chem.Phys.,121(2004)6470.30N.O.BirgeandS.R.Nagel,Phys.Rev.Lett.,54(1985)31N.O.BirgeandS.R.Nagel,Rev.Sci.Instr.,58(1987)32R.CasaliniandC.M.Roland,Phys.Rev.B,66(2002)33D.A.Ditmars,S.Ishihara,S.S.Chang,G.BernsteinandE.D.West,J.Res.Nat.Bur.Stand.,87(1982)159.34C.M.RolandandR.Casalini,J.Chem.Phys.,122(2005)35M.Paluch,R.CasaliniandC.M.Roland,Phys.Rev.B,66(2002)092202.36C.M.Roland,M.Paluch,T.PakulaandR.Casalini,Phil.Mag.B,84(2004)1573.37R.CasaliniandC.M.Roland,Phys.Rev.B,71(2005) DOI:10.1007/s10973-005-7221-7J.Therm.Anal.Cal.,83,2006ROLAND,CASALINI