/
Stacked Hierarchical Labeling Stacked Hierarchical Labeling

Stacked Hierarchical Labeling - PowerPoint Presentation

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
412 views
Uploaded On 2016-07-19

Stacked Hierarchical Labeling - PPT Presentation

Dan Munoz Drew Bagnell Martial Hebert The Labeling Problem 2 Input Our Predicted Labels Road Tree Fgnd Bldg Sky The Labeling Problem 3 The Labeling Problem Needed better representation ID: 410405

segmentation tree level predictions tree segmentation predictions level output road building foreground regions current train parent training input hierarchical

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Stacked Hierarchical Labeling" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Stacked Hierarchical Labeling

Dan Munoz Drew Bagnell Martial HebertSlide2

The Labeling Problem

2

Input

Our Predicted Labels

Road

Tree

Fgnd

Bldg

SkySlide3

The Labeling Problem

3Slide4

The Labeling Problem

Needed:

better representation &

interactions

Ohta

‘78

4Slide5

Using Regions

5

Input

Ideal

Regions

Slide from T.

MalisiewiczSlide6

Using Regions

6

Input

Actual

Regions

Slide from T.

MalisiewiczSlide7

Using Regions + Interactions

7

Image Representation

Ideal

Prob. Graphical Model

High-order

Expressive interactions

small regions

big regionsSlide8

Using Regions + Interactions

8

Actual PGM

Restrictive interactions

Still

NP-hard

Image Representation

small regions

big regionsSlide9

Learning with Approximate Inference

PGM learning requires exact inference

Otherwise, may diverge Kulesza and Pereira ’08

9

Simple

Random Field

Learning PathSlide10

PGM Approach

10

Input

PGM Inference

OutputSlide11

Our Approach

11

Input

f

1

Output

f

N

Sequence of simple problems

Cohen ’05,

Daume

III ’06Slide12

A Sequence of Simple Problems

Training simple modules to net desired output

No searching in exponential spaceNot optimizing any joint distribution/energy

Not necessarily doing it before!

Kulesza

& Pereira ‘08

12

Input

f

1

f

N

Output

Stacked Hierarchical LabelingSlide13

Our Contribution

An effective PGM alternative for labelingTraining a hierarchical

procedure of simple problemsNaturally analyzes multiple scalesRobust to imperfect segmentationsEnables more expressive interactions

Beyond pair-wise smoothing

13Slide14

Related Work

14

small regions

big regions

Learning with multi-scale configurations

Joint probability distribution

Bouman

‘94,

Feng

‘02, He ’04

Borenstein

‘04, Kumar ’05

Joint score/energy

Tu ‘03, S.C. Zhu ‘06, L. Zhu ‘08Munoz ‘09, Gould ’09, Ladicky ’09

Mitigating the intractable joint optimization

Cohen ’05,

Daume

III ’06, Kou ‘07,

Tu

’08

, Ross ‘10Slide15

15

. . .

. . .

1

2

3Slide16

16

. . .

. . .

1

2

3

In this work, the

segmentation

tree is

given

We use the technique from

Arbelaez

’09Slide17

17

1

2

3

4

Segmentation Tree

(

Arbelaez

’09

)Slide18

Parent sees big pictureNaturally handles scales

18

Label Coarse To Fine

1

2

3

4

Segmentation Tree

(

Arbelaez

’09

)Slide19

19

Parent sees big picture

Naturally handles scales

Break into

simple tasks

Predict label

mixtures

f

1

f

2

f

3

f

4

1

2

3

4

Segmentation Tree

(

Arbelaez

’09

)Slide20

Handling Real Segmentation

fi

predicts mixture of labels for each region

Input

Segmentation Map

20Slide21

Actual Predicted Mixtures

21

P(Tree)

P(Building)

P(

Fgnd

)

(brighter

 higher probability) Slide22

Training Overview

How to train each module fi

?How to use previous predictions?How to train the hierarchical sequence?

22

f

1

f

2Slide23

Training Overview

How to train each module f

i ?

How to use previous predictions?

How to train the hierarchical sequence?

23

f

1

f

2Slide24

Modeling Heterogeneous Regions

Count

true labels Pr present in each region r

Train a

model

Q

to match each

P

rLogistic Regressionmin

Q H(P,Q)  Weighted Logistic RegressionImage features: texture, color, etc. (

Gould ’08)

24Slide25

Training Overview

How to train each module fi

?How to use previous predictions?How to train the hierarchical sequence?

25

f

1

f

2Slide26

Using Parent Predictions

Use broader context in the finer regions

Allow finer regions access to all parent predictions

Create &

append

3 types of context features

Kumar ’05,

Sofman

’06, Shotton ’06,

Tu ‘0826

Parent regions

Child regionsSlide27

Parent Context

Refining the parent

27

Parent

ChildSlide28

Detailed In Paper

Image-wise (co-occurrence)Spatial Neighborhood (center-surround)

Σ

regions

28Slide29

Training Overview

How to train each module fi

?How to use previous predictions?How to train the hierarchical sequence?

29

f

1

f

2Slide30

Approach #1

Train each module independentlyUse ground truth context features

Problem: Cascades of ErrorsModules depend on perfect context features

Observe no mistakes during training

 Propagate mistakes during testing

30

f

1

f

2

f

3

f

4Slide31

Approach #2

Solution: Train in feed-forward mannerViola-Jones ‘01, Kumar ‘05, Wainwright ’06, Ross ‘10

31

f

1

f

2

f

3

f

4Slide32

Training Feed-Forward

32

f

l

(Parameters)

LogReg

A

B

CSlide33

Training Feed-Forward

33

A

B

C

f

l

f

l

f

lSlide34

Cascades of Overfitting

Solution: Stacking

Wolpert

’92

, Cohen ’05

Similar to x-validation

Don’t predict on data

used for training

34

F.F. Train Confusions

F.F. Test Confusions

Stacking Test ConfusionsSlide35

Stacking

35

f

l

LogReg

A

B

C

ASlide36

Stacking

36

A

f

l

ASlide37

Stacking

37

f

l

LogReg

A

B

C

BSlide38

Stacking

38

A

B

f

l

f

l

A

BSlide39

Stacking

39

A

B

C

f

l

f

l

f

l

A

B

CSlide40

Learning to Fix Mistakes

Segments

Level 5

Level 6

Level 7

Current

Output

Person part of incorrect segment

Person segmented, but relies on parent

Person fixes previous mistakeSlide41

Level 1/8 Predictions

SegmentationSlide42

15

%

Level 1/8 Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Segmentation

18

%

12

%

31

%Slide43

15

%

Level 1/8 Predictions

Road

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

Segmentation

18

%

12

%

31

%Slide44

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Level 2/8

Predictions

SegmentationSlide45

P(

Foreground

)

P(

Tree

)

P(

Road

)

Level 2/8

Predictions

Current Output

Segmentation

P(

Building

)Slide46

Level 3/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide47

Level 4/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide48

Level 5/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide49

Level 6/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide50

Level 7/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide51

Level 8/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide52

Level 1/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide53

Level 2/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide54

Level 3/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide55

Level 4/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide56

Level 5/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide57

Level 6/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide58

Level 7/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide59

Level 8/8

Predictions

P(

Foreground

)

P(

Tree

)

P(

Building

)

P(

Road

)

Current Output

SegmentationSlide60

Stanford Background Dataset

8 Classes715 Images

Inference timeSegmentation & image features held constant

60

Method

sec/image

Gould ICCV ‘09

30

- 600

SHL (Proposed)

10

- 12

Method

Avg

Class Accuracy

Gould ICCV ‘09

65.5

LogReg

(Baseline)

58.0

SHL (Proposed)

66.2Slide61

MSRC-21

21 Classes591 Images

61

Method

Avg

Class Accuracy

Gould IJCV ‘08

64

LogReg

(Baseline)

60

SHL (Proposed)71

Ladicky

ICCV ‘09

75

Lim ICCV’09

67

Tu

PAMI’09

69

Zhu NIPS’08

74Slide62

MSRC-21

21 Classes591 Images

62

Method

Avg

Class Accuracy

Gould IJCV ‘08

64

LogReg

(Baseline)

60

SHL (Proposed)71

Ladicky

ICCV ‘09

75

LogReg

(Baseline)

69

SHL (Proposed)

75

Lim ICCV’09

67

Tu

PAMI’09

69

Zhu NIPS’08

74Slide63

Ongoing Work

63

Labeling 3-D Point Clouds

with

Xuehan

Xiong

Building

Car

Ground

Veg

Tree Trunk

PoleSlide64

Conclusion

An effective structured prediction alternativeHigh performance with no graphical model

Beyond site-wise representationsRobust to imperfect segmentations & multiple scales

Prediction is a series of simple problems

Stacked to avoid cascading errors and

overfitting

64

Input

f

1

f

N

Output

…Slide65

Thank You

AcknowledgementsQinetiQ North America Robotics FellowshipONR MURI: Reasoning in Reduced Information Spaces

Reviewers, S. Ross, A. Grubb, B. Becker, J.-F. LalondeQuestions?

65Slide66

66Slide67

Image-wise

Σ

regions

67Slide68

Spatial neighborhood

68Slide69

Interactions

Described in this talk

Described in the paper69Slide70

SHL vs. M3N

70Slide71

SHL vs. M3N

71