/
METHODOLOGY Open Access An improved allelespecific PCR METHODOLOGY Open Access An improved allelespecific PCR

METHODOLOGY Open Access An improved allelespecific PCR - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
389 views
Uploaded On 2015-04-27

METHODOLOGY Open Access An improved allelespecific PCR - PPT Presentation

To overcome this problem primers with a single nucleotide artificial mismatch introduced within the three bases closest to the 3 end SNP site have been used in ASPCR However for one SNP site nine possible mismatches can be generated among the three ID: 55333

overcome this problem

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "METHODOLOGY Open Access An improved alle..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

METHODOLOGYOpenAccess Animprovedallele-specificPCRprimerdesign methodforSNPmarkeranalysisandits application JingLiu 1 † ,ShunmouHuang † ,MeiyuSun 1 ,ShengyiLiu 1 ,YumeiLiu 2 ,WanxingWang 2 ,XiurongZhang 1 , HanzhongWang 1 andWeiHua 1* Abstract Background: AlthoughSingleNucleotidePolymorphism(SNP)markerisaninvaluabletoolforpositionalcloning, associationstudyandevolutionaryanalysis,lowSNPdetectionefficiencybyAllele-SpecificPCR(AS-PCR)stillrestricts itsapplicationasmolecularmarkerlikeothermarkerssuchasSimpleSequenceRepeat(SSR).Toovercomethis problem,primerswithasinglenucleotideartificialmismatchintroducedwithinthethreebasesclosesttothe3 ’ end (SNPsite)havebeenusedinAS-PCR.However,foroneSNPsite,ninepossiblemismatchescanbegenerated amongthethreebasesandhowtoselecttherightonetoincreaseprimerspecificityisstillachallenge. Results: Inthisstudy,differentfromthepreviousreportswhichusedalimitedquantityofprimersrandomly (severalordozenpairs),wesystematicallyinvestigatedtheeffectsofmismatchbasepairs,mismatchsitesandSNP typesonprimerspecificitywith2071primerpairs,whichweredesignedbasedonSNPsfrom Brassicaoleracea 01-88and02-12.Accordingtothestatisticalresults,we(1)foundthattheprimersdesignedwithSNP(A/T),in whichthemismatch(CA)inthe3 rd ’ end,hadthehighestallele-specificity(81.9%).This informationcouldbeusedwhendesigningprimersfromalargequantityofSNPsites;(2)performedtheprimer designprinciplewhichformstheoneandonlybestprimerforeverySNPtype.Thisisneverreportedinprevious studies.Additionally,wefurtheridentifieditsavailabilityinrapeseed( BrassicanapusL. )andsesame( Sesamum indicum ).Highpolymorphismpercent(75%)ofthedesignedprimersindicateditisageneralmethodandcanbe appliedinotherspecies. Conclusion: ThemethodprovidedinthisstudycangenerateprimersmoreeffectivelyforeverySNPsitecompared tootherAS-PCRprimerdesignmethods.Thehighallele-specificefficiencyoftheSNPprimerallowsthefeasibility forlow-tomoderate-throughputSNPanalysesandismuchsuitableforgenemapping,map-basedcloning,and marker-assistedselectionincrops. Keywords: SNP,AS-PCR,Mismatch,Polymorphism,Destabilization Introduction SingleNucleotidePolymorphisms(SNPs)aresinglebase differencesbetweenDNAofdifferentindividuals.Once discovered,SNPscanbeconvertedintogeneticmarkers thatcanbeassayed[1,2].Asthemostabundantandsta- bileformofgeneticvariationinmostorganism genomes,SNPsaremoresuitableforgenotypingmar- kerscomparedtotheconventionalmarkerssuchas AFLP(Amplifiedfragmentlengthpolymorphism)and SSR(SimpleSequenceRepeat).Withthedevelopmentof bio-technology,SNPsarebecomingfavoredgeneticmar- kersthatareusedinmarker-assistedbreeding[3],map- basedcloning[4],studyofevolutionaryconservations betweendifferentspecies[5,6],andthedetectionofrisk- associatedalleleslinkedtohumandiseases[7]. *Correspondence: huawei@oilcrops.cn † Equalcontributors 1 KeyLaboratoryofBiologyandGeneticImprovementofOilCrops,Ministry ofAgriculture,OilCropsResearchInstituteoftheChineseAcademyof AgriculturalSciences,Wuhan430062,People ’ sRepublicofChina Fulllistofauthorinformationisavailableattheendofthearticle PLANT METHODS ©2012Liuetal.;licenseeBioMedCentralLtd.ThisisanOpenAccessarticledistributedunderthetermsoftheCreative CommonsAttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycited. Liu etal.PlantMethods 2012, 8 :34 http://www.plantmethods.com/content/8/1/34 Recently,massiveparallelsequencingplatformssuchasGSFLX(Roche),Solexa(Illumina)andSOLID(Ap-pliedBiosstems)havesignificantlyreducedthecostofhighthroughoutsequencing[8].Alargenumberofgen-omesandtranscriptomeshavebeenrapidlysequencedusingthesenewplatformstoidentifynovelSNPsinmaize[9],rapeseed[10]andhuman[11]etc.Alargevarietyoftechniquesforhigh-throughputSNPgenotyp-inghavealsobeendevelopedusingTaqman[12],Ampli-fluor[13],genomere-sequencing[14,15],andSNParrays[16,17].Thesetechniquesareexpensiveandre-quirespecializedequipments,whichcostmorestandardprimersandarenotpracticalforassayinglow-tomoderate-throughputSNPs.Hence,thereisaneedforsimpleandaccurategenotypingassaysthatcanbeimplementedinlaboratorieslackingaccesstosophisti-catedequipment.TraditionalSNPgenotypingmethodssuchasCAPs(TheCleavedAmplifiedPolymorphicSequence),dCAPs(derivedCAPS),andAS-PCR(Allele-specificPCR)arewidelyusedforlow-throughputapplicationsinplantre-search.Inapplication,CAPSanddCAPSarerestrictedbyendnucleasesitesthatcouldbeinefficientandnotcost-effective[18-20].AS-PCRisbasedontheextensionofprimeronlywhenits3endisaperfectlycomplemen-tedtothetemplate[21].Inprinciple,SNPscanbedetectedusingallele-specificPCRprimersbasedontheterminalnucleotideofaprimerthatcorrespondstoaspecificSNPsite.However,reliablediscriminationbe-tweentheallelesisnotsufficienttoachieveusingthisdescribedmethod.Toovercomethisproblem,allele-specificprimerswithanadditionalbasepairchangewithinthethreebasesclosesttotheSNPsitebetweenalleleshavebeenused[21,22].EachspecificSNPsiteinanallelecangenerateatleast18possibleprimerswithonemismatchbase[23].TheSNAPERprogramgener-atesalistofupto16possibleprimersperSNPsiteforeachallele[23].Therefore,choosingadditionalmis-matchestoincreaseprimerspecificityhasbeenachal-lengeforAS-PCR[23].SomestudieshaveproposedcriteriafordesigningAS-PCRprimers.Hayashietal(2004)proposedthatbasepairmismatchescreatedthroughT-GorC-Atransversionsatthirdbasefrom3endcouldincreasetheallele-specificity[24].Hirotsu(2010)identifiedA-TtransversionandA-Gtransitionwereusefulbasepairmismatchesforimprovementofallele-specificamplification[25].TheWASPtoolcouldalsobeusedtointroducemismatchesatthepenultimatetotheterminal)baseoftheprimer[26,27].How-ever,moststudiesusedonlyalimitedquantityofpri-mers,whichmighthavesomeinfluencesonefficiencyofSNPprimerspecificity.Inthisstudy,over2000primerpairs,whichweredesignedbasedonSNPsbetweenB.oleracealines01-88and02-12,wereusedtoanalyzetheeffectsofdifferentSNPtypes,mismatchbasesandsiteswithinthethreebasesclosesttothe3endonprimerspecificity.Basedontheseresults,weadvancedtheSNPprimerdesignprinciple.ComparedtotraditionalSNPgenotypingmethods,ourmethodcouldprovideacost-effectiveal-ternativeforhighefficientspecificprimersandwouldgreatlyfacilitateplantresearch.SNPanalysisofB.oleracea01-88and02-12genomeTheassemblyofgenomesequencesofB.oleracea02-12hasbeenaccomplished(unpublished).ToidentifySNPsbetweenB.oleracealines01-88and02-12,gen-omeDNAofline01-88wasre-sequencedandatotalof119millionreadswereobtained.Togethigh-qualitySNPs,thesequencedatawassubjectedtostringentfil-tering:Thereadsfromline01-88werecomparedtothesequencesofline02-12usingBLASTN.Sitescontaining Table1PutativeSNPsidentifiedbetweenB.oleraceagenomesof01-88and02-12SNP(01-88/02-12)No.ofeverySNPtypeCausedbyTotalNo.oftransitionandtransversionA/G201247transition806387C/T202316G/A202801transitionT/C200023A/C79813transversion615726G/T79800C/A80029transversionT/G79782A/T99848transversionT/A99743G/C48372transversionC/G48339etal.PlantMethodsPage2of9http://www.plantmethods.com/content/8/1/34 tri-allelicorhighdegreeofpolymorphismwereomitted. Thesequencescontainingover8readsmappedto uniquesitesinthegenomesequencewereextracted fromline01-88.Pairwisealignmentwasusedtoevalu- atetheSNPsbetweengenomesequencesof01-88and 02-12.Thealignmentresultrevealedatotalof1,422,113 SNPsexistedbetween B.oleracea lines01-88and02-12 (anaverageofoneSNPinevery360bpfragment) (Table1).AnalysistotheSNPsshowedoverhalf(56.7%, 806387/1422113)ofthenucleotidechangesweretransi- tions(A-GorC-T).Transversions(A-T,A-C,C-Gand G-T)accountedfor43.3%(615726/1422113)ofthe detectedSNPs(Table1). TofurtheridentifytheputativeSNPsandestimatethe proportionoffalsepositives,96SNPsitesderivedfrom only8-readsequenceswerechosenrandomly.Primers weredesignedaccordingtothegenomesequencesnear theseSNPsitesandallampliconscouldgenerateabout 500bpfragmentsinwhichcontainingthecorresponding SNPs.Sangersequencingresultsshowed93SNPswere identicalwiththeputativeSNPsand3SNPswereun- predictedorundetectable.Thisindicatedaveryhigh proportionofSNPsreallyexistedbetweenlines01-88 and02-12. DesignandefficiencydetectionofSNPprimers Primerdesignstrategyforallele-specificPCRwasillu- stratedinFigure1.PrimerP1,whichwasdesignedbased on02-12genomesequence,formedamismatch(TG)in 3 ’ endwiththeDNAsequenceof01-88.Whileinmost cases,itstillcouldamplifythebandwith01-88effi- ciently.Afterintroducinganothermismatch(GA)inthe 2 nd siteclosesttothe3 ’ endinprimerP2,itcouldonly amplifythebandwith02-12(Figure1a).Basedonthe methoddescribedbyCha etal (1992),mismatchsites andmismatchbasesclosesttotheSNPsitewereran- domlychosen[21].Therefore,ninepossiblemismatches couldbegeneratedamongthethreebasesclosestto 3 ’ endofprimer(Figure1b). Inthisstudy,1686 B.oleracea SNPsincluding12kinds ofSNPswerechosenforprimerdesign(Additionalfile1). Amongthem,someofthoseSNPscouldformthesame 3 ’ endmismatchesin01-88withallele-specificprimers. Therefore,allSNPscouldbeclassifiedintoeightkindsin- cludingA/GandC/T,T/CandG/A,A/CandG/T,T/G andC/A,A/T,T/A,C/G,G/C(Table2)basedonmis- matchtypes(forexample,forSNPsA/GandC/T,the3 ’ endmismatchoftheallele-specificprimerdesignedfor 02-12isTGin01-88).Moreover,forconvenienceofdata analysis,wefurthercompressedintofourSNPtypesin- cludingA/G(T/C),A/C(T/G),A/T(T/A)andG/C(C/G) basedontheirdestabilizationeffectsinmismatchbase pairs(Table2)[28,29]. Inthisstudy,alltheprimerswereusedtoamplifythe genomeDNAoflines01-88and02-12,andPCRproducts weredetectedon2.5%agarosegelbyelectrophoresis.The Figure1 SchematicrepresentationoftheAS-PCRprimerdesign.a ,PrimerP1formsaperfectmatchwithallelefrom02-12,butamismatch basepairatthe3 ’ endwiththeDNAsequenceofallelefrom01-88.Itcouldamplifythebandinbothoftwolines01-88and02-12.PrimerP2 formstwomismatchbasepairswithallelefrom01-88atthe3 ’ endandinthe3 rd nucleotidefromthe3 ’ end,whileamismatchbasepairinthe 3 rd nucleotidewithallelefrom02-12.Itamplifiedthebandonlyin02-12. b ,SchematicrepresentationofdifferentmismatchesduringtheSNP primerdesign. Liu etal.PlantMethods 2012, 8 :34 Page3of9 http://www.plantmethods.com/content/8/1/34 resultsshowedthatamongthe1686primerpairs,490pairs(29.1%)displayedpolymorphism(Table3).WhenclassifiedbySNPtypes,thepercentsofpolymorphismofA/G(C/T),A/C(G/T),A/T(T/A),C/G(G/C)were26.4%(111/420),31.3%(131/418),34%(148/435)and37.5%(155/413)respectively.Whenclassifiedbymismatchsites,polymorphismpercentsofthe2and4baseloca-tionclosesttotheSNPsiteswere25.1%(139/554),32.9%(189/575)and29.1%(162/557),respectively.IfSNPtypeandmismatchsiteinprimerswerebothconsidered,thepolymorphismpercentofSNPA/T(T/A)whichhadmis-matchesinthe3sitewas45.9%(72/157),followedbyC/G(G/C)inthe2sitewith43.3%(58/134)and3sitewith39.4%(56/142).ThepolymorphismpercentofSNPA/G(C/T)was26.4%(111/420),whichalsohasthelowestpolymorphismsinallmismatchsites.Moreover,thepolymorphismpercentsofSNPprimersclassifiedbythetypesofmismatchbasesinthe2and4mismatchsiteswereanalyzed(Table4).Resultsshowedthatpolymorphismpercentsof8mismatchtypeswerecloselyequivalentinthe2sites(22.5%-26.4%).Highpolymorphismpercentsappearedintwomismatchbasepairsinthe3baselocation(CA,46.8%,37/79;TG,38.6%,27/70).Atthe4baseawayfromtheSNPsite,thepolymorphismpercentsofprimerswithmismatchbasepairsGA,TC,TTandCCwereover30%(31.7%-33.3%).BasedontheresultsinTable3andTable4,wein-ferredthatprimers,whichhadCAmismatchinthe3baseclosesttoSNPsiteA/T(T/A),hadthehighestpolymorphismbetweenlines01-88and02-12.Toiden-tifythisconjecture,385primersdesignedfromSNPA/T(T/A),whichcontainedGorTbaseinthe3nucleo-tide,werefurtherchosenforpolymorphismanalysis(Additionalfile2).Thedetectionresultsshowedthat295SNPprimerswerepolymorphic(295/385,76.6%)be-tweenlines01-88and02-12.WhentheseprimerswereclassifiedbasedontheSNPs(A/TorT/A)in3end,thespecificitypercentofSNP(A/T)(158/193,81.9%)washigherthanthatofSNP(T/A)(137/192,71.4%)(Figure2aandFigure2b).ApplicationofthedesignmethodBesidesthehighestpolymorphicprimersmentionedabove,thehighpolymorphicprimerscouldbefoundineverySNPtypebasedonourresults.Theprincipleofpri-merdesignisdescribedasfollowed:firstly,foreverykindofSNP,themismatchsite(the2and4siteclosesttotheSNPsite)ischosenaccordingtotheresultofpoly-morphismpercentinTable3.FortheprimersofthreeSNPtypesA/T(T/A),A/C(G/T)andA/G(C/T),thehighestpolymorphismpercentsare45.9%,37.4%and30.7%,respectivelyandthemismatchesinprimersarealllocatedinthe3site.WhilefortheSNPtypeC/G(G/C),themismatchesinthe2siteclosestto3endofprimersshowhighestpolymorphismpercent(43.3%).Forthebase Table2DestabilizationstrengthofeightcombinationsofmismatchnucleotidepairingSNPtypesmismatchtypesatendofprimerinDestabilizationstrengthofmismatchtype(01-88/02-12)A/GTGStrongC/TGTG/AACT/CCAA/CTCWeakG/TCTC/AAGT/GGAA/TTTStrongandMediumT/AAAG/CCCStrongandMediumC/GGG Table3EffectofmismatchsitesandSNPtypesonthespecificityofallele-specificPCRsitesclosesttothe3ofprimersPolymorphismpercentofSNPPolymorphismpercentofprimersforeverySNPtypeA/G,C/TA/C,G/TA/T,T/AC/G,G/CThe2base25.1%23.0%26.8%26.6%43.3%(139/554)(32/139)(37/138)(38/143)(58/134)The3base32.9%30.7%37.4%45.9%39.4%(189/575)(42/137)(52/139)(72/157)(56/142)The4base29.1%25.7%29.8%28.1%29.9%(162/557)(37/144)(42/141)(38/135)(41/137)Totalnumber29.1%26.4%31.3%34%37.5%(490/1686)(111/420)(131/418)(148/435)(155/413)etal.PlantMethodsPage4of9http://www.plantmethods.com/content/8/1/34 inmismatchsite(the2 nd ,3 rd and4 th siteclosesttothe SNPsite),thereexistthreedifferentmismatchstylesfor everykindofbase.Thebestmismatchstyleischosen accordingtothestatisticalresultsfromTable4.Forex- ample,ifthereisaGinthe3 rd site,themismatchesof CC,CAandCTwillbeformed.Thepolymorphismper- centofprimerswithCA(46.8%)mismatchishighestcom- paredtothatofCC(23.9%)andCT(32.1%). Wefurtheridentifiedtheusabilityoftheprimerdesign methodonrapeseedandsesame.Duringrapeseedoilcon- tentresearch,withDHlinesofF1generationbetween zy036and51070,whichhadbeenreportedbyHua etal [30],weidentifiedaQTLrelatedtooilcontentlocatedon A2chromosome.BecauseoflackofmarkersintheQTL interval,wedesignedatotalof20SNPprimersbetween markerO110C05andmarkerBrSF000036-9usingour Table4Effectofartificialbasemismatchesinthreemismatchsitesonthespecificityofallele-specificPCR Mismatchsites closesttothe3 ’ end ofprimers Mismatch types Polymorphism percentof primers Mismatch types Polymorphism percentof primers Mismatch types Polymorphism percentof primers Mismatch types Polymorphism percentof primers The2 nd baseTC26.2%GA22.5%CA25.7%AA23.8% (17/65)(16/71)(19/74)(15/63) TG26.4%GG24.2%CC26.1%TT25.6% (19/72)(15/62)(18/69)(20/78) The3 rd baseTC32.1%GA28.3%CA46.8%AA30.6% (26/81)(17/60)(37/79)(26/85) TG38.6%GG30.4%CC23.9%TT29.7% (27/70)(21/69)(16/67)(19/64) The4 th baseTC32.9%GA31.7%CA28.0%AA26.8% (24/73)(26/82)(21/75)(19/71) TG23.3%GG25.8%CC33.3%TT32.4% (14/60)(16/62)(22/66)(22/68) Figure2 AnalysisofspecificityforSNPprimersof B.oleracea .a ,1-24primerpairs,whichcorrespondedtoBo001-Bo024,wereintroduced withaCAbasepairmismatchinthe3 rd nucleotideclosestto3 ’ end(A/TSNPtype,AAmismatch). b ,24primerpairs,whichcorrespondedto Bo194-Bo217,wereintroducedwithaCAbasepairmismatchinthe3 rd nucleotideclosestto3 ’ end(A/TSNPtypes,TTmismatch).A,01-88;B,02-12. Liu etal.PlantMethods 2012, 8 :34 Page5of9 http://www.plantmethods.com/content/8/1/34 method(Table5).Resultsshowedthat15primerswerelocatedintheQTLinterval(Figure3).Thepolymorphismpercentofprimersis(15/20,75%).Another24primerscamefromA/TSNPsbetweentwosesamelines28-31andZZM2289werealsodesigned.Andamongthem,18SNPmarkersweredetectedtohavepolymorphism(18/24,75%)(Additionalfile3).BothresultsfromrapeseedandsesameindicatedthattheSNPprimermethodcouldbeusedinotherspecies.DiscussionInrecentyears,variousmethodsforhigh-throughputSNPanalysishavebeendescribed[28].AlthoughthesemethodsarehighlyefficientcomparedtoothertraditionalSNPgenotypingbyelectrophoresis,significantinvestmentsofexpensiveprobes,microchipsorspecialinstrumentationhavelimitedtheiruseinmostlaboratories.Fortraditionallow-throughputSNPgenotypingmethods,themaintimeandlabor,andlowefficiencyofspecificprimerarestillchallenges[27].TheAllele-specificPCRmethodwasdevelopedforalleleanalysisofclinicallysignificantmuta-tions.Tofacilitatereliablediscriminationbetweentwoalleleshighly,theadditionofartificialmismatcheswithinthethreebasesfrom3endoftheprimersmightbebenefi-cial[23].Althoughthethirdpositionfromthe3endhasbeendetectedasthebesttoplaceamismatchbaseinprimerpreviously[24],wereallydonotknowwhichkindofmismatch(foreverybase,therearethreekindsofmis-matches)isthebestchoiceinthe3position.Inthisstudy,differentfromthepreviousreportswhichusedonlyalimitedquantityofprimers,alargeamountofSNPpri-mersdesignedbyintroducingmismatcheswithinthethreebasesclosesttothe3endofprimerswereusedtosolvethisproblem.Generally,AS-PCRprimersdesignedrandomlyhadalowallelicspecificityrateofapproximately30%,whichwasconsistentwithourresults(29.1%).However,mis-matchsites(2,and4siteclosesttothe3end)haddifferenteffectsonthepolymorphicefficiencyofprimers.Inourstudy,wefoundprimerpolymorphicpercentwaslowestinthe2baselocationbecausemanyprimerscouldnotamplifyanybandsinbothofthelines01-88and02-12.Forthe4baselocation,thepolymorphismeffi-cienciesofallmismatchtypeswerealmostequivalent(under30%).Thehighestpolymorphicpercentwasfoundinthe3baselocatedclosesttotheSNPsite,whichwasobservedbyHayashietalsimilarly(2004)[24].Accordingtotheresultsofthermodynamicsofmis-matchesreportedbyPeyretetal(1999)andLittle(2001)[28,29],themismatchbasepairshaddifferentdestabilizationeffectsthatcouldbedividedintoweak,medium,andstrongstrengthofdestabilization.Therefore,duringdesignofAS- Table520primerspairsdesignedaccordingtoSNPsbetweenrapeseedzy036and51070MismatchsiteclosesttoendofbasepairsForwardprimer(5)Reverseprimer(5Br94494C/G2CTAGTTACATAGGTCCACAATCATAGAATAAACTTTTCTACCATTCGGAGCCTAAATAGAGGTAAAAGGTGBr27005T/A3CAAAGATTGTTTCAAACGCAAAAATATACAACAAAATCAACGAATTTCACACTTTAGTAATGCACTGAGATTTBr31054T/A3CACAAGTGAGACTGAATCCACAATAAAGGATGCTACTTCGGATAAAATCCCCAGCTCTACTATACATTCCBr43193T/A3CACCTTTTATTTGATCACAGGGGTTTGTAGGAACTTCAGCCAGTAACGTCCCCCACATCBr51190T/A3CAAAATAATGGCATGCTCCTCTTTAATCTACCAAACTTATTCGGTTCCGAAAATAATGCGATGCBr34590T/A3CAAAGTGACGGTTCTTTAAGTTATCAGAGTCTCCTAATAGATTTGGGATTAAAATCAAGTTGTGGGTTAGTTTTBr03637T/A3CAATTACAGAATGTGTGTGCAAACAGAAATACATTACTTGTGTCCCCATTTCGTGTAATCATAAAGCTAGBr39807T/A3CACGAGACTCGGGTCGTTGAGTGGAAATATCCTAAAGACTTCTCCCACAAATCCACCATBr68275T/A3CATGCCGCATGTATGTCGGAGATGATAATAACCGAAACCCTAGTAGGCTAGGCGCBr29253T/A3CATGGCGCTAAATCCAAGAAGAAGTCCATTAATTACCACCTTTCTTACCCTTGTTACTCATGACAGBr61715T/A3CATGAATAGATTCTTCCGCATCACCTTTTAAAGTTAATCTTGTTTCAAGAGAAATTGAACAAGCTGCAGTBr24494C/G2GTGTCAATAATACTAGCAAACATACAACAGCGAGATTCTTGCAAATTTTAGTCAAAGTCGGTAGAAAATAGATCBr06710T/A3CATCTTGTCGATGCTGAGCTGGCAAATACTGGTCAAGCTCACACACACTCCACGTCBr00855T/A3CACACTATGGGCTATGGTGGGTCCTTCAATTGATTGGAGTTCTGTGCTCGTAGTTTTGCBr71197C/G2GTTATGGCACACAGACAGAGTTCCAGGAAATCTCTTCCAGTTCGATATCTTGGTCTGTCCCBr07809C/G2GTCTCCGCCCACATGTTATAATATGTCAGTATATCTTCTAGTGAATGGAGAAAGAGAACAAAGCCTACAGTACABr02456T/A3CAGCCTTCAGAAGGTCTGGAAACTGGATTGTTCGATGGACTTCACTACCTCCCATAGCTBr77080T/A3CACGGATAGTTTCGGGTTCGGTTCGATTACCGAACGGGTACCCGAATATATAAAAATATTAATTBr77646T/A3CATCCACCAGAATTGTGTGATGGCACTTACTGAAAAACGTCAGGTCAATGTATCAACTTCGATAABr14184G/A3ACGATTAACCGATGAAAGTCTCAGTGCCACAGTCGTCTGTGACTCCCAAACACTTGGATAGetal.PlantMethodsPage6of9http://www.plantmethods.com/content/8/1/34 PCRprimers,theeffectsofmismatchesnomatterin3 ’ end orwithinthethreebasesclosesttothe3 ’ endofprimers shouldbebothconsidered[26,2 7].Inthisstudy,forconveni- entanalysis,wecompressedfourSNPtypesincludingA/T (T/A),A/G(T/C),A/C(T/G),andG/C(C/G)basedontheir destabilizationeffectsofmismatchbasepairsformedin 3 ’ endofprimers.Amongthem,primersgeneratedfromSNP typesA/G(T/C)hadthelowestdetectionefficiencyinall mismatchsites.ItwasreasonablebecauseACandGTmis- matcheshadweakdestabilizationstrength.Theprimersin- cludingthesespecificmismatchesat3 ’ endwereeasierto makeamplificationinbothalleles. Similarly,mismatchtypeswithinthethreebasesclosest tothe3 ’ endaffectspecificitiesofprimers.Inthe3 rd base, CAandTG(thehighestpolymorphicmismatches) belongedtoweakdestabilizationstrengthmismatches. ThemismatchesGA,TC,TT,andCC(thehigherpoly- morphicmismatches)locatedatthe4 th baseawayfrom theSNPsitebelongedtothestrongdestabilization strengthmismatches.Fromtheresults,wededucedthat SNPs(A/T),whichcontainedCAmismatchesinthe3 rd nucleotidefromthe3 ’ endoftheprimers,hadthehighest allele-specification.Accordingtothecombinationrules, polymorphicefficiencybetweenTT(mismatchin3 ’ endof primer,strongdestabilizationstrength)andCA(weak destabilizationstrength)aretypicallyhigherthanAA (mismatchin3 ’ endofprimer,mediumdestabilization strength)andCA.Ourresultsconfirmedthisdeduction. Basedontheseresults,weperformedtheprimerdesign principlewhichcouldformtheoneandonlybestprimer foreverySNPtype.Amongthem,mismatchesinthesec- ondpositionsweremoreappropriateforSNPtype(C/G andG/C),whichwasdifferentfromtheviewpointthat mismatchinthe3 rd positionwasthebestchoiceforAS- PCR.Withtheprimerdesignprinciple,wefurthertested theprimersdesignedbasedonSNPsofrapeseedandses- ame.Highefficientpolymorphismoftheprimersidenti- fiedtheusabilityofthemethodinotherspecies. Conclusion ASNPprimerdesignmethodwasdevelopedwhich improvedthepolymorphismefficiencyofAS-PCRpri- mershighly.Themodifiedprimerdesigncanhelpto identifythebesteffectiveprimerforeachSNPandpo- tentiallyisavaluabletoolforgenemapping,map-based cloningandmarker-assistedselectionincrops. Methods PlantmaterialsandSNPinformation Atleast20uggenomeDNAof B.oleracea lines01-88 and02-12ataconcentrationof  50ng/ul,wassentfor Solexasequencingasacommercialservice.TheDNA wasfragmentedintosmallpiecesusingdivalentcations atelevatedtemperature.ThecleavedshortDNAfrag- mentswerepreparedforSolexasequencinginBGI (China).REPEATMASTERwasusedforscreening repeatedsequenceswithdefaultparameterandlabeling thesequencesfromdifferentmaterials.Forgenomeloca- tionoffragments,SOAPadaptingthedefaultparameter valueswasusedfortheinitialalignmentandscreening Figure3 SNPmarkerdensityincreaseofrapeseedlinkagemap.a ,AnoilcontentQTLwasscannedbetweenO110C05andBrSF000036-9. b ,Amongtwentyprimers,fifteennewmakersweregeneratedforfurtherQTLlocation. Liu etal.PlantMethods 2012, 8 :34 Page7of9 http://www.plantmethods.com/content/8/1/34 toavoidtheeffectsofparalog[31].SNPprimerdesignwasperformedusingscreenedresults.SNPanalysisandverificationbySangersequencingToverifytheputativeSNPs,96SNPsitesderivedfromonly8-readsequenceswererandomlychosenbetweenB.olera-cealines01-88and02-12.Primers(Sangon,China)weredesignedtoamplifyabout500bpfragmentsinwhichcon-tainingthecorrespondingSNPs.ThePCRreactioncon-tained25ngDNA,0.2mMdNTP,0.5UTaq(MBI,USA)with1xbuffer,and5pMofeachprimer.PCRparameterswereasfollows:apre-denaturationof94°Cfor2min,35cyclesofamplification(94°Cfor30S,60°Cfor1minand72°Cfor1min)andafinalextensionreactionwasper-formedat72°Cfor5min.PCRproductsweredetectedon1.0%agarosegelbyelectrophoresisandligatedintoPMD18T-vector(Takara,Japan)forSNPidentification.PrimerdesignandtestingAllele-specificprimerscorrespondingto12kindsofSNPB.oleraceaweredesignedaccordingtodifferentcombi-nationsbetweenmismatchbaseandmismatchsite.Optimizationofmeltingtemperature,primerlengthandamplifiedproductslengthwereachievedusingprimerprogramWebSNAPER(http://pga.mgh.harvard.edu/cgi-bin/snap3/websnaper3.cgi)[23].PrimersequenceswerescreenedagainstB.oleraceagenomerepetitivesequencestominimizemis-priming.PolymorphismassayofSNPprimerswereperformedbyPCRanddetectedbyagarosegelelectrophoresis.Alltheforwardprimersareallele-specificforB.oleracealine02-12andthereverseprimerisnotallele-specific.AmplificationofSNPprimerswasperformedonC1000TMThermalCycler(Bio-Rad,USA)using20ulreactions.Beforecarryingoutthisstudy,wehadchosensomeTaqpolymerases:MBITaqDNAPolymeraseandTakaraTaq(twogeneralTaq),MBIDreamTaqPolymeraseandTakaraExTaq(whicharebetterinamp-lificationefficiencyandsensitivitycomparedtogeneralTaqs)toidentifytheireffectsonamplificationefficiency.Resultshowedbothofgeneralpolymerases(MBITaqDNAPolymeraseandTakaraTaq)hadsameandhighallele-specificamplificationefficiencycomparedtotheothertwoTaqs.Therefore,generalTaqpolymerasewouldbebestchoiceinallele-specificPCRandTaqDNAPolymerasefromMBIwaschoseinthisstudy.ThePCRreactioncontained25ngDNA,0.2mMdNTP,0.5UTaqDNAPolymerasewith1xbuffer,and5pMofeachprimer.PCRparameterswereasfollows:apre-denaturationof94°Cfor2min,35cyclesofamplifica-tion(94°Cfor30s,55°C-65°Cfor1minand72°Cfor30s)andafinalextensionreactionwasperformedat72°Cfor10min.PCRproductswereseparatedon2.5%agarosegelbyelectrophoresis.ApplicationinrapeseedandsesameRapeseedDNAsamplesincludingtwoparents(highoilcontentlinezy036andlowoilcontentline51070)andDHlines,whichhadbeenreportedbyHuaetalalwerepreparedusingtheDNAeasyplantkitminiprep(Qiagen,Valencia,CA).Zy036and51070werere-sequencedandblastedwithB.napusgenomesequence(unpublished).Additionally,twosesamelines28-31andZZM2289(genomesequencehasnotbeenpublished)werealsousedinourresearch.AllSNPswerechosenaccordingtothemethoddescribedinB.oleracea01-88and02-12.TheSNPprimersweredesignedaccordingtoourprimerdesignmethod.AdditionalfilesAdditionalfile1:1686primerpairsdesignedbasedontheSNPsB.oleracealines01-88and02-12.Additionalfile2:385primerpairsdesignedbasedontheSNPsB.oleracealines01-88and02-12whichareA/TSNPtypewithGandTbaseinthe3nucleotide.Additionalfile3:24primerpairsdesignedbasedontheSNPsbetweensesamelines28-31andZZM2289.SNP:SingleNucleotidePolymorphism;AS-PCR:Allele-SpecificPCR;SSR:SimpleSequenceRepeat;RFLP:Restrictionfragmentlengthpolymorphism;AFLP:Amplifiedfragmentlengthpolymorphism;CAPs:TheCleavedAmplifiedPolymorphicSequence;dCAPs:DerivedTheCleavedAmplifiedPolymorphicSequence.CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.JLandSMHcontributedtoprimerdesignandtooktheco-leadroleinwritingthemanuscript.SMHandMYSperformedtheprimeranalysis.SYLofferedsequencedataofB.oleraceaandB.napus.YMLandWWXprovidedtheDNAofB.oleracea01-88and02-12.XRZprovidedthegenomesequenceandDNAofS.indicumL.28-31andZZM2289.HZWparticipatedindiscussionsduringexperimentalwork.WHconceivedtheprojectandapprovedthefinalversionofthemanuscript.Allauthorsreadandapprovedthefinalmanuscript.AcknowledgementThisstudywassupportedbytheNationalKeyBasicResearchProgramofChina(2011CB109300),National863plansprojects(2012AA101107),andKeyProjectsintheNationalScience&TechnologyPillarProgram(2010BAD01B02).AuthordetailsKeyLaboratoryofBiologyandGeneticImprovementofOilCrops,MinistryofAgriculture,OilCropsResearchInstituteoftheChineseAcademyofAgriculturalSciences,Wuhan430062,PeoplesRepublicofChina.InstituteofVegetablesandFlowersoftheChineseAcademyofAgriculturalSciences,Beijing100081,PeoplesRepublicofChina.Received:15June2012Accepted:17August2012Published:24August20121.GutIG:Automationingenotypingofsinglenucleotidepolymorphisms.HumMutat2.KwokPY:Methodsforgenotypingsinglenucleotidepolymorphisms.AnnuRevGenomicsHumGenetetal.PlantMethodsPage8of9http://www.plantmethods.com/content/8/1/34 3.Flint-GarciaSA,ThornsberryJM,BucklerES: Structureoflinkage disequilibriuminplants. AnnuRevPlantBiol 2003, 54: 357 – 374. 4.WangC,LiuZ: Arabidopsisribonucleotidereductasesarecriticalforcell cycleprogression,DNAdamagerepair,andplantdevelopment. PlantCell 2006, 18: 350 – 365. 5.FeltusFA,WanJ,SchulzeSR,EstillJC,JiangN,PatersonAH: AnSNP resourceforricegeneticsandbreedingbasedonsubspeciesindicaand japonicagenomealignments. GenomeRes 2004, 14: 1812 – 1819. 6.HillierLW,MillerRD,BairdSE,ChinwallaA,FultonLA,KoboldtDC, WaterstonRH: ComparisonofC.elegansandC.briggsaegenome sequencesrevealsextensiveconservationofchromosomeorganization andsynteny. PLoSBiol 2007, 5: e167. 7.EberleMA,NgPC,KuhnK,ZhouL,PeifferDA,GalverL,Viaud-Martinez KA,LawleyCT,GundersonKL,ShenR,MurraySS: Powertodetectrisk allelesusinggenome-widetagSNPpanels. PLoSGenet 2007, 3: 1827 – 1837. 8.ShendureJ,MitraRD,VarmaC,ChurchGM: Advancedsequencing technologies:methodsandgoals. NatRevGenet 2004, 5: 335 – 344. 9.BarbazukWB,EmrichSJ,ChenHD,LiL,SchnablePS: SNPdiscoveryvia454 transcriptomesequencing. PlantJ 2007, 51: 910 – 918. 10.TrickM,LongY,MengJ,BancroftI: Singlenucleotidepolymorphism(SNP) discoveryinthepolyploidBrassicanapususingSolexatranscriptome sequencing. PlantBiotechnolJ 2009, 7: 334 – 346. 11.LiR,LiY,FangX,YangH,WangJ,KristiansenK,WangJ: SNPdetectionfor massivelyparallelwhole-genomeresequencing. GenomeRes 2009, 19: 1124 – 1132. 12.LivakKJ,MarmaroJ,ToddJA: Towardsfullyautomatedgenome-wide polymorphismscreening. NatGenet 1995, 9: 341 – 342. 13.MyakishevMV,KhripinY,HuS,HamerDH: High-throughputSNP genotypingbyallele-specificPCRwithuniversalenergy-transfer-labeled primers. GenomeRes 2001, 11: 163 – 169. 14.HuangJ,WeiW,ZhangJ,LiuG,BignellGR,StrattonMR,FutrealPA, WoosterR,JonesKW,ShaperoMH: WholegenomeDNAcopynumber changesidentifiedbyhighdensityoligonucleotidearrays. HumGenomics 2004, 1: 287 – 299. 15.ShaperoMH,ZhangJ,LoraineA,LiuW,DiX,LiuG,JonesKW: MARA:a novelapproachforhighlymultiplexedlocus-specificSNPgenotyping usinghigh-densityDNAoligonucleotidearrays. NucleicAcidsRes 2004, 32: e181. 16.MatsuzakiH,DongS,LoiH,DiX,LiuG,HubbellE,LawJ,BerntsenT, ChadhaM,HuiH,YangG,KennedyGC,WebsterTA,CawleyS,WalshPS, JonesKW,FodorSP,MeiR: Genotypingover100,000SNPsonapairof oligonucleotidearrays. NatMethods 2004, 1: 109 – 111. 17.ShenR,FanJB,CampbellD,ChangW,ChenJ,DoucetD,YeakleyJ,Bibikova M,WickhamGarciaE,McBrideC,SteemersF,GarciaF,KermaniBG, GundersonK,OliphantA: High-throughputSNPgenotypingonuniversal beadarrays. MutatRes 2005, 573: 70 – 82. 18.KoniecznyA,AusubelFM: AprocedureformappingArabidopsis mutationsusingco-dominantecotype-specificPCR-basedmarkers. Plant J 1993, 4: 403 – 410. 19.NeffMM,TurkE,KalishmanM: Web-basedprimerdesignforsingle nucleotidepolymorphismanalysis. TrendsGenet 2002, 18: 613 – 615. 20.ThielT,KotaR,GrosseI,SteinN,GranerA: SNP2CAPS:aSNPandINDEL analysistoolforCAPSmarkerdevelopment. NucleicAcidsRes 2004, 32: e5. 21.ChaRS,ZarblH,KeohavongP,ThillyWG: Mismatchamplificationmutation assay(MAMA):applicationtothec-H-rasgene. PCRMethodsAppl 1992, 2: 14 – 20. 22.KwokS,ChangSY,SninskyJJ,WangA: Aguidetothedesignanduseof mismatchedanddegenerateprimers. PCRMethodsAppl 1994, 3: S39 – S47. 23.DrenkardE,RichterBG,RozenS,StutiusLM,AngellNA,MindrinosM,Cho RJ,OefnerPJ,DavisRW,AusubelFM: Asimpleprocedurefortheanalysis ofsinglenucleotidepolymorphismsfacilitatesmap-basedcloningin Arabidopsis. PlantPhysiol 2000, 124: 1483 – 1492. 24.HayashiK,HashimotoN,DaigenM,AshikawaI: DevelopmentofPCR-based SNPmarkersforriceblastresistancegenesatthe Piz locus. TheorAppl Genet 2004, 108: 1212 – 1220. 25.HirotsuN,MurakamiN,KashiwagiT,UjiieK,IshimaruK: Protocol:asimple gel-freemethodforSNPgenotypingusingallele-specificprimersinrice andotherplantspecies. PlantMethods 2010, 6: 12. 26.WangkumhangP,ChaichoompuK,NgamphiwC,RuangritU,ChanprasertJ, AssawamakinA,TongsimaS: WASP:aWeb-basedAllele-SpecificPCR assaydesigningtoolfordetectingSNPsandmutations. BMCGenomics 2007, 8: 275. 27.BuiM,LiuZ: Simpleallele-discriminatingPCRforcost-effectiveandrapid genotypingandmapping. PlantMethods 2009, 5: 1. 28.TsuchihashiZ,DracopoliNC: ProgressinhighthroughputSNP genotypingmethods. PharmacogenomicsJ 2002, 2: 103 – 110. 29.LittleS: Amplification-refractorymutationsystem(ARMS)analysisof pointmutations. CurrProtocHumGenet 2001, 9: 9.8.1 – 9.8.12. 30.HuaW,LiRJ,ZhanGM,LiuJ,LiJ,WangXF,LiuGH,WangHZ: Maternal controlofseedoilcontentin Brassicanapus :theroleofsiliquewall photosynthesis. PlantJ 2012, 69: 432 – 444. 31.LiR,LiY,KristiansenK,WangJ: SOAP:shortoligonucleotidealignment program. Bioinformatics 2008, 24: 713 – 714. doi:10.1186/1746-4811-8-34 Citethisarticleas: Liu etal. : Animprovedallele-specificPCRprimer designmethodforSNPmarkeranalysisanditsapplication. Plant Methods 2012 8 :34. Submit your next manuscript to BioMed Central and take full advantage of: € Convenient online submission € Thorough peer review € No space constraints or color “gure charges € Immediate publication on acceptance € Inclusion in PubMed, CAS, Scopus and Google Scholar € Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit Liu etal.PlantMethods 2012, 8 :34 Page9of9 http://www.plantmethods.com/content/8/1/34