PPT-Program Synthesis meets Machine Learning

Author : melody | Published Date : 2023-10-29

Lecture 1 Part a Sriram Rajamani Course logistics 2 lectures per week Monday amp Wednesday 330500PM Course instructors Chiranjib Bhattacharya Deepak DSouza Sriram

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Program Synthesis meets Machine Learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Program Synthesis meets Machine Learning: Transcript


Lecture 1 Part a Sriram Rajamani Course logistics 2 lectures per week Monday amp Wednesday 330500PM Course instructors Chiranjib Bhattacharya Deepak DSouza Sriram Rajamani. Spring . 2013. Rong. Jin. 2. CSE847 Machine Learning. Instructor: . Rong. Jin. Office Hour: . Tuesday 4:00pm-5:00pm. TA, . Qiaozi. . Gao. , . Thursday 4:00pm-5:00pm. Textbook. Machine Learning. The Elements of Statistical Learning. Clustering and pattern recognition. W. ikipedia entry on machine learning. 7.1 Decision tree learning. 7.2 Association rule learning. 7.3 Artificial neural networks. 7.4 Genetic programming. 7.5 Inductive logic programming. Lecture . 4. Multilayer . Perceptrons. G53MLE | Machine Learning | Dr Guoping Qiu. 1. Limitations of Single Layer Perceptron. Only express linear decision surfaces. G53MLE | Machine Learning | Dr Guoping Qiu. R/Finance. 20 May 2016. Rishi K Narang, Founding Principal, T2AM. What the hell are we talking about?. What the hell is machine learning?. How the hell does it relate to investing?. Why the hell am I mad at it?. David Kauchak. CS 451 – Fall 2013. Why are you here?. What is Machine Learning?. Why are you taking this course?. What topics would you like to see covered?. Machine Learning is…. Machine learning, a branch of artificial intelligence, concerns the construction and study of systems that can learn from data.. By Namita Dave. Overview. What are compiler optimizations?. Challenges with optimizations. Current Solutions. Machine learning techniques. Structure of Adaptive compilers. Introduction. O. ptimization . Massimo . Poesio. INTRO TO MACHINE LEARNING. WHAT IS LEARNING. Memorizing something . Learning facts through observation and exploration . Developing motor and/or cognitive skills through practice . Organizing new knowledge into general, effective representations . CS539. Prof. Carolina Ruiz. Department of Computer Science . (CS). & Bioinformatics and Computational Biology (BCB) Program. & Data Science (DS) Program. WPI. Most figures and images in this presentation were obtained from Google Images. Dan Roth. University of Illinois, Urbana-Champaign. danr@illinois.edu. http://L2R.cs.uiuc.edu/~danr. 3322 SC. 1. CS446: Machine Learning. Tuesday, Thursday: . 17:00pm-18:15pm . 1404 SC. . Office hours: . An Overview of Machine Learning Speaker: Yi-Fan Chang Adviser: Prof. J. J. Ding Date : 2011/10/21 What is machine learning ? Learning system model Training and testing Performance Algorithms Machine learning SAHE 7339 Leadership Programs (CS725). Autumn 2011. Instructor: . Prof. . Ganesh. . Ramakrishnan. TAs: . Ajay Nagesh, Amrita . Saha. , . Kedharnath. . Narahari. The grand goal. From the movie . 2001: A Space Odyssey. (1968). Outline. Gihyuk Ko. PhD Student, Department of Electrical and Computer Engineering. Carnegie Mellon University. November. 14, 2016. *some slides were borrowed from . Anupam. . Datta’s. MIT Big . Data@CSAIL. Er. . . Mohd. . Shah . Alam. Assistant Professor. Department of Computer Science & Engineering,. UIET, CSJM University, Kanpur. Agenda. What is Machine Learning?. How Machine learning . is differ from Traditional Programming?.

Download Document

Here is the link to download the presentation.
"Program Synthesis meets Machine Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents