PPT-Clustering Applications Clustering Applications
Author : missroach | Published Date : 2020-08-27
1 Mark Stamp KMeans for Malware Classification Clustering Applications 2 Chinmayee Annachhatre Mark Stamp Quest for the Holy Grail Holy Grail of malware research
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Clustering Applications Clustering Appli..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Clustering Applications Clustering Applications: Transcript
1 Mark Stamp KMeans for Malware Classification Clustering Applications 2 Chinmayee Annachhatre Mark Stamp Quest for the Holy Grail Holy Grail of malware research is to detect previously unseen malware. S. A. L. S. A. Group. http://salsahpc.indiana.edu. Principal Investigator Geoffrey Fox. Project Lead Judy Qiu. Scott . Beason. , . Jaliya. . Ekanayake. , . Thilina. . Gunarathne. , . Jong. . Youl. References . Breckenridge, James N. (2000), “Validating Cluster Analysis: Consistent Replication and Symmetry,” . Multivariate Behavioral Research. , 35 (2), 261-285.. Calinski. , R. B. and J. . Harabasz. Asymptotics. Yining Wang. , Jun . zhu. Carnegie Mellon University. Tsinghua University. 1. Subspace Clustering. 2. Subspace Clustering Applications. Motion Trajectories tracking. 1. 1 . (. Elhamifar. Lecture outline. Distance/Similarity between data objects. Data objects as geometric data points. Clustering problems and algorithms . K-means. K-median. K-center. What is clustering?. A . grouping. of data objects such that the objects . issue in . computing a representative simplicial complex. . Mapper does . not place any conditions on the clustering . algorithm. Thus . any domain-specific clustering algorithm can . be used.. We . What is clustering?. Why would we want to cluster?. How would you determine clusters?. How can you do this efficiently?. K-means Clustering. Strengths. Simple iterative method. User provides “K”. Unsupervised . learning. Seeks to organize data . into . “reasonable” . groups. Often based . on some similarity (or distance) measure defined over data . elements. Quantitative characterization may include. Lecture outline. Distance/Similarity between data objects. Data objects as geometric data points. Clustering problems and algorithms . K-means. K-median. K-center. What is clustering?. A . grouping. of data objects such that the objects . 1. Mark Stamp. K-Means for Malware Classification. Clustering Applications. 2. Chinmayee. . Annachhatre. Mark Stamp. Quest for the Holy . Grail. Holy Grail of malware research is to detect previously unseen malware. Produces a set of . nested clusters . organized as a hierarchical tree. Can be visualized as a . dendrogram. A . tree-like . diagram that records the sequences of merges or splits. Strengths of Hierarchical Clustering. Produces a set of . nested clusters . organized as a hierarchical tree. Can be visualized as a . dendrogram. A tree-like diagram that records the sequences of merges or splits. Strengths of Hierarchical Clustering. Log. 2. transformation. Row centering and normalization. Filtering. Log. 2. Transformation. Log. 2. -transformation makes sure that the noise is independent of the mean and similar differences have the same meaning along the dynamic range of the values.. Randomization tests. Cluster Validity . All clustering algorithms provided with a set of points output a clustering. How . to evaluate the “goodness” of the resulting clusters?. Tricky because . What is clustering?. Grouping set of documents into subsets or clusters.. The Goal of clustering algorithm is:. To create clusters that are coherent internally, but clearly different from each other.
Download Document
Here is the link to download the presentation.
"Clustering Applications Clustering Applications"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents