/
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION VOL IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION VOL

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION VOL - PDF document

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
441 views
Uploaded On 2015-02-27

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION VOL - PPT Presentation

51 NO 10 OCTOBER 2003 Comparative Analysis of Edge and Broadside Coupled Split Ring Resonators for Metamaterial DesignTheory and Experiments Ricardo Marqus Member IEEE Francisco Mesa Member IEEE Jess Martel and Francisco Medina Senior Member IE ID: 39984

OCTOBER

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON ANTENNAS AND PROPAG..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2572IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.51,NO.10,OCTOBER2003ComparativeAnalysisofEdge-andBroadside-CoupledSplitRingResonatorsforMetamaterialDesign—TheoryandExperimentsRicardoMarqués,Member,IEEE,FranciscoMesa,Member,IEEE,JesúsMartel,andFranciscoMedina,SeniorMember,IEEEThispaperdevelopsaquasi-analyticalandself-con-sistentmodeltocomputethepolarizabilitiesofsplitringresonators(SRRs).Anexperimentalsetupisalsoproposedformeasuringthemagneticpolarizabilityofthesestructures.Experimentaldata MARQUÉSetal.:EDGE-ANDBROADSIDE-COUPLEDSRRthemodel.Further,theadvantagesanddisadvantagesofbothtypesofparticleswillbediscussed.Thepaperisorganizedasfollows:SectionIIthoroughlydevelopstheproposedmodelfortheEC-SRRandtheBC-SRR.Theanalysisinthissectionfollowsandcompletesthepreviousanalysisin[20]and[9],whichresultsinaself-consistentandquasi-analyticalmethodforcomputingthefrequencyofresonanceandthepolariz-abilitiesoftheanalyzedparticles.Next,SectionIIIpresentsanewmethodtoobtainexperimentallytheaboveparameters.Specifically,theproposedmethodprovidesthefrequencyofresonanceandthemagneticpolarizabilityoftheSRRs,whicharethemostrelevantparametersformetamaterialdesign.InSectionIV,thetheoreticalresultsarecomparedwithourexper-imentaldataandpreviouslypublishedresults.Oncethemodelhasbeensuccessfullyvalidatedbytheabovecomparisons,itisusedtoevaluatethepotentialofbothEC-SRRsandBC-SRRsformetamaterialdesign.II.THEORYThissectionwilldescribethemodelsforthepolarizabilitiesofbothtypesofSRRsandforthecompositeNMPMandLHMmetamaterialsbasedonthoseparticles.TheEC-SRRandBC-SRRtobeanalyzedareshowninFig.1(a)and(b).Inbothcasestwosimilarsplitringsarecoupledbymeansofastrongdistributedcapacitanceintheregionbetweentherings(theslitsaremeaningfullywiderthanthedistancebetweenthe and ,respectively).Whenatime-harmonicexternal)magneticfieldofangularfrequency isappliedalongthe axisofthesestructures,anelectromotiveforcewillappeararoundtheSRRs.ProvidedthattheelectricalsizeoftheSRRcanbeconsideredsmall,aquasistaticbehaviorisexpected.Withthisquasistaticmodelinmind,itisnotdifficulttoseehowtheinducedcurrentlineswillpassfromoneringtotheotherthroughthecapacitivegapsbetweenthemintheformoffielddisplacementcurrentlines(thecurrentlinescanbeviewedastracingalmostcirculartrips).Therefore,thetotalcurrentintensityflowingonbothringsremainsthesameforanycrosssectionofthestructure(i.e.,itisindependentoftheangularpolarcoordinate).Thewholedevicethenbehavesasan circuitdrivenbyanexternalelectromotiveforce.Thetotalcapacitanceofthis circuitwillbetheseriescapacitanceoftheupperandthelowerhalves(withrespectthelinecontainingtheringgaps)oftheSRRandtheresonancefrequency givenby (1)where istheperunitlength(p.u.l.)capacitancebetweentherings, isthetotalinductanceoftheSRR,and istheaverageradiusoftheconsideredSRR.Theaboveresultfortheresonancefrequency(1)isconfirmedbyamoredetailedelectromagneticanalysis[20]thatalsopro-videsthepolarizabilitiesasafunctionof , andothergeo-metricalandconstitutiveparametersoftheEC-SRR.Thisanal-ysiscanbeextendedtotheBC-SRRbysimplyneglectingthe (a) Fig.1.TwotypesofSRR.(a)EdgecoupledSRR(EC-SRR).(b)BroadsidecoupledSRR(BC-SRR).cross-polarizationeffectsthatwerepresentintheEC-SRRpar-ticle[20].Theresultingequationscanbesummarizedasfol-lows:•FortheEC-SRR: (2) (3) •FortheBCSRR: (5) (6) (7) 2574IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.51,NO.10,OCTOBER2003 and arethemagneticandelectricinduced and theexternalfieldsand thepo-larizabilities,whicharefoundtobe[20] (8) (9) (10) (11)with and beingthep.u.l.capacitancebetweentheringswhenthedielectricslabisremoved.In(5)–(11)subscriptsstandforcartesiancomponentsandsuperscriptsformagnetic/magnetic( ),electric/elec-tric( )orelectric/magnetic( )interactionbetweentheparticleandtheexternalfield.Ohmiclossescanbeapproximatelyincorporatedtothemodelbymeansofaneffectiveresistanceoftherings thatcanbeintroducedasanimaginarypartofthetotalinductance givingthefollowingcomplexinductance: whichsubstitutesto intheaboveexpressionsforthepolariz-ThecomputationoftheSRRpolarizabilitiesusingtheaboveexpressionsrequirestheevaluationof , and Assumingthattheringcurvaturehasnegligibleeffect,alargenumberofmethodsforcomputingthep.u.l.capacitancebetweentheringsofboththeEC-SRRandtheBC-SRRcanbefoundintheliterature(see,forinstance,[21]andreferencestherein).Forthepresentpurposesithasbeenfoundthattheclosedexpressionsgivenin[21,Tables2.6and2.7]giveenoughaccuracy.Thesetablesprovidedesignformulasforthephaseconstant andtheimpedance ofamicrostriptransmissionlineandapairofcoupledmetallicstripsonadielectricsubstrate,respectively.Thep.u.l.capacitance, ,ofthesestructuresareobtainedfromthewell-knownexpression: [21].Oncetheyareobtained,thep.u.l.capacitanceofthepairofcoupledstripsdirectlygives oftheEC-SRR.FortheBC-SRRitcanbeobservedthatthep.u.l.capacitanceofapairofcoupledmetallicstripsseparatedbyadielectricsheetofthickness [seeFig.1(b)]ishalfthep.u.l.capacitanceofasinglemicrostriptransmissionlineonasheetmadeofthesamedielectricandthickness ,whichcanbeobtainedfromtheformulasin[21,Table2.6].Theproposedmethodofcomputationisfastand,aswasaforementioned,givesenoughaccuracyintheframeofthepresentmodel.However,betterresultscouldbeobtainedbyusingmorespecificmethodswhichcantakeintoaccounttheeffectsofcurvature(see[22]foradeeperdiscussiononthistopic).Nevertheless,thisimprovementonlywouldhavesenseifotheraspectsofthemodel,suchasthecomputationoftheringinductance,areimprovedtoo.Thecomputationofthetotalinductance oftheSRRsisnotsostraightforward,althoughanappropriateapproximationcanprovideaconsiderablesimplificationwhilekeepingreason-ableaccuracy.Accordingtothepreviousassumptionsonthebe-haviorofthelinecurrentsalongtheSRRs,itcanbeassumedthatthetotalinductanceofbothSRRscanbeapproximatedbytheinductanceofaequivalentringwhoseaverageradiusistheaverageradiusoftheconsideredSRRandwidthequaltothewidth ofeachoriginalring(seeFig.2).Theinductancecanbethencomputedmakinguseofthevariationalexpression ,where isthemagnetostaticenergyforthetotalcurrentintensity supportedbythering.SolvingforthemagnetostaticpotentialintheFourier-Besseldomain,andaftersomealgebraicmanipulations,itisfinallyobtainedthat(seeAp-pendix) (13)where istheFourier-Besseltransformofthecurrentfunc-onthering, definedby (14)with beingtheazimuthalsurfacecurrentdensityonthering.Forpracticalcomputationsithasbeenassumedaconstantvaluefor onthering,thatis, for Thisapproximation,takingintoaccountthevariationalnatureof(13),givesareasonableapproximationfor .Inthiscase,theFourier-Besseltransform, ,isanalyticallyobtainedintermsoftheStruveandBesselfunctions(seeAppendix)andtheintegrationin(13)iscarriedoutnumerically.Abetterap-proximationcouldbeobtainedifamoreaccuratedescription (multiplebasisfunctions)hadbeenemployed.Never-theless,thisnumericalimprovementisnotexpectedtoenhancesubstantiallythequalityoftheapproachsinceotherapproxima-tionsarealreadyinvolvedinthetheory.Finally,asaforementioned,ohmiclossesareintroducedinthemodelbymeansoftheeffectiveresistance, ,oftheSRR.ThiseffectiveresistanceisobtainedbyusingtheequivalentringmodelforthecurrentdistributionontheSRR.Ifaconstant isassumedontheringofFig.2,theresistancecanbeapproxi-matedas if otherwise(16)where istheskindepthand and thethicknessandconduc-tivityofthemetallization,respectively.OncetheEC-SRRandtheBC-SRRpolarizabilitieshavebeenobtainedinaself-consistentway,theycanbeusedinalocalfieldtheoryinordertodeterminethemacroscopicconstitutiveparametersofmediaconsistingofaregulararrayofSRRs.Thislocalfieldtheorymakesuseofthewell-knownLorentztheory[13],[12]anddirectlyappliestoanySRR-basedNMPM.ItcanbealsoappliedtotheanalysisofdiscreteLHMmadebythesuperpositionofanartificialplasmaandaSRR-basedNMPM.Inthislatterapplication,itwillbeimplicitlyassumedthattheconstitutiveparametersoftheLHMmediaarethesuperposi-tionofthoseoftheartificialplasmaandtheNMPM.Although MARQUÉSetal.:EDGE-ANDBROADSIDE-COUPLEDSRR Fig.2.EquivalentsingleringmodelforcomputingofbothSRRs.Inbothisthewidthoftheoriginalringsand theaverageradiusofthewholestructure(seealsoFig.1).thisassumptionisnotalwaysjustified(thegeneralconditionsforthevalidityofthisassumptionarediscussedin[23]),ithasbeenfoundtobeingoodagreementwithexperimentalresults[6]–[9]andnumericalsimulations[6],[10],[11].Subjectedtothisrestriction,theapplicationoftheproposedtheorytodis-creteLHMwouldaccountfortheartificialplasmabysimplyintroducinganadditionaleffectivedielectricsusceptibility, (whichmaybetensorialforanisotropicartificialplasmas).Fora2-Dartificialplasmamadeofaregulararrayofparallelmetallicplatesseparatedadistance ,andforelectricfieldpolarizationandwavepropagationbothparalleltotheplates, isgivenby[1] (17)where playstheroleofaneffectiveplasmafrequency,whichcoincideswiththecutofffrequencyoftheparallel-platewaveg- .For2-and3-Darraysofwires,theexpressionsfor and maybecomemorecomplicated[1],[3],[4].III.EXPERIMENTALAtthefrequenciesofinterestformetamaterialdesign(i.e.,nearthefirstresonance)thedominanteffectinboththeEC-SRRandBC-SRRparticlesturnsouttobethemagneticpolariz-abilityaccountedforbythe parameter.Thispolarizabilitygivesrisetoastrongdiamagneticbehaviornearandaboveres-onance[4],[20],thusplayinganessentialroleinthedesignofNMPMandLHM.AnotherrelevanteffectintheEC-SRRpar-ticleiscross-polarization,whichresultsinabianisotropicbe-haviorofthoseNMPMandLHMdesignedusingthisparticle.Sincetheexperimentalevidenceofthislattereffecthasbeenal-readydiscussed[20],thissectionwillfocusspecificallyontheexperimentaldeterminationofthemagneticpolarizabilityoftheEC-SRRandBC-SRR(thislatterparticledoesnotexhibitmag-netoelectriccoupling).Accordingto(8),themainparameterstobedeterminedaretheresonancefrequency, ,andthenonres-onantfactor Asimplewayofdeterminingtheresonancefrequencycon-sistsinplacingtheresonatorinahollowwaveguideataloca- Fig.3.SchemeoftheexperimentalsetupformeasuringtheSRRsmagneticpolarizabilities.TheSRRisplacedinsideacircularaperturemadeinametallicscreenplacedintherectangularwaveguide.Forthereportedexperimentsthediameteroftheaperturewas6mm. Fig.4.Atypicalplotofthe measuredusingtheexperimentalsetupofFig.3.AnEC-SRRwasusedinthisparticularexperiment.EC-SRRdimensions 2.6mm,0.6mm,0.2mm.Substrateofthicknessmmandpermittivity ,withmetallizationsmadeofcopperwith=35mandconductivity tionwheretheelectromagneticfieldcouldexciteitandtomea-suretheinthetransmissioncoefficient(or,alternatively,theinthereflectioncoefficient)[24].Infact,thismethodonlyprovidestheresonancefrequencyofaninfinitearrayofperi-odicallyrepeatedparticles,whichisshiftedovertheresonancefrequencyofasingleparticle.However,ifthedimensionsofthewaveguidecrosssectionareseveraltimesthoseoftheSRR,thisshiftisnotveryimportant[24].Thistechnique,however,doesnotprovideanyinformationabout .Inordertoobtainamea-sureof ,theexperimentalsetuphasbeenmodifiedinthewayshowninFig.3.TheSRRisplacedinsideasmallcircularaper-turepracticedinametallicscreenlocatedinthemiddleoftherectangularwaveguide.Theinputandtheoutputaretwocom-mercialcoaxialtorectangularwaveguidetransitions.Whenthe forthisstructureismeasured,typicalplotsasthatshowninFig.4areobtained.Thecorrespondstotheresonancefrequency(1),forwhichthemagneticdipoleoftheparticlebe-comesamaximum.Theinthe canbeexplainedbyusingBethe’stheoryofdiffractionthroughsmallapertures[25],[26].Followingthistheory,theaperturewithouttheSRRwillradiatetowardtheoutputasanequivalentmagneticdipoleof (18)where istheradiusoftheapertureand themagneticfieldinthewaveguideiftheaperturewasnotpresent.SincetheSRRisparamagneticbelowresonance[see(8)],theremustbecertain 2576IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.51,NO.10,OCTOBER2003frequency atwhichtheinduceddipoleintheSRRcancelsouttheequivalentdipoleoftheaperturewithouttheSRR(18).Atthisfrequency,theradiationfromtheSRR-loadedaperturetowardtheoutputwillbesubstantiallyreduced,thusoriginatingtheobservedinthe plot.Byequatingthemagnitudesofthemagneticdipolesin(2),(5),and(18), in(8)canbedetermined.Itshouldbenotedthattheexternalmagneticfluxdensityatthecenteroftheapertureishalftheexternalmagneticfluxdensitythatwouldbeinthewaveguideiftheaperturewasnotpresent[26].Takingthisfactintoaccount,thefinalresultfor isgivenby thus,providingamethodtoobtaintheexperimentalvalueof fromthemeasurementoftheresonancefrequency andthefrequency Finallyitshouldbementionedthatanaccuratemeasurement and bymeansoftheaboveprocedurerequirestheaperturediametertobechoseninsuchawaythattheresonancefrequencyisnotsubstantiallyaffectedbytheSRR-aperturecoupling.Measurementsoftheresonancefrequency,madebyplacingtheSRRinthewaveguidewithoutthemetallicscreen,haveshownthatbothmeasurementsagreewithanerrorlessthan1%forthechosendiameterofthescreen(6mm)andfortheparticlesizesconsideredintheexperiments(seeSectionIV).IV.NUMERICALANDXPERIMENTALESULTSInordertoverifytheaccuracyoftheproposedtheoreticalmodel,asetofEC-andBC-SRRswereprintedonacommer-cialmetallizedsubstratewithdielectricconstant ,thickness 0.49mmandcoppermetallizationswiththickness mandconductivity S/m.Theresonancefrequencyand weremeasuredusingthetechniquereportedinSectionIIIforeachSRR.Thetheoreticalresultswerecom-putedusingthemodelreportedinSectionII.Thecomputedthe-oreticalresultsandthemeasuredresultsareshowninFig.5(a)to(d).Differentvaluesoftheexternalradius andstripwidth oftheSRRswereconsidered.Anacceptableagreementcanbeobservedbetweenthetheoreticalandexperimentalresults.Thisagreementshowsthattheproposedmodel,despiteofitssimplicity,canaccountforthedescriptionofthemainEC-andBC-SRRscharacteristics.Disagreementsmainlyoccurforthehighestvaluesof .Thisfactissomewhatexpectedsincethedescriptionoftheringresponsetoanexternalexcitationintermsoftheringinductanceislessaccurateforthesecases.Thebehavioroftheresonancefrequencyand withrespecttotheexternalradiusissimilarforboththeEC-andtheBC-SRR.However,thedependencewiththestripwidth isquitedif-ferent.TheBC-SRRseemstobealmostinsensitiveto theresonancefrequencyoftheEC-SRRincreaseswith .Thisfactcanbeexplainedconsideringthatthep.u.l.capacitanceandtheinductancehaveoppositevariationswith fortheBC-SRR.However,thep.u.l.capacitanceisratherinsensitiveto forthe (a) (b) Fig.5.Measured(dotsanddiamonds)andcomputed(solidlines)valuesfortheresonancefrequency, =! ,and forsomeEC-SRRandBC-SRRprintedonadielectricsubstratewiththesamespecificationsasinFig.4.:0.49mm,0.2mm(forEC-SRR), ,withmetallizationsmadeofcopperwithathickness=35mandconductivity TheremainingEC-SRRandBC-SRRdimensionsaregivenineachplot.Fromthestandpointofmetamaterialsdesign,themostim-portantparametercharacterizingtheSRRsispossiblythereso-nancefrequency.Thisparametergivestheelectricalsizeoftheparticlewithintheregionofinterest,whichisthemainlimita-tionfortheaccuracyofthecontinuous-mediumdescriptionofthemetamaterial.TheSRRsanalyzedinFig.5(a)to(d)havean MARQUÉSetal.:EDGE-ANDBROADSIDE-COUPLEDSRR Fig.5.(.)Measured(dotsanddiamonds)andcomputed(solidlines)valuesfortheresonancefrequency, =! ,and forsomeEC-SRRandBC-SRRprintedonadielectricsubstratewiththesamespecificationsasinFig.4.:0.49mm,0.2mm(forEC-SRR), ,withmetallizationsmadeofcopperwithathickness=35mandconductivity S/m.TheremainingEC-SRRandBC-SRRdimensionsaregivenineachplot.electricalsizeofapproximatelyatenthofthefree-spacewave-lengthatresonance.Thesevaluesareofthesameorderthanthosereportedinpreviousdesigns[6]–[9],allofthembeingclosetothelimitofapplicabilityofthecontinuous-mediumap-proach.Therefore,itisveryconvenienttoexplorethefeasibilityofdesigningSRRswithsmallerelectricalsizesatresonance.AssumingthatthetotalsizeoftheSRRremainsapproximatelyconstant( ),(1)saysthat isgovernedbytwopa-rameters:thetotalinductance andthep.u.l.capacitance Ofthesetwoquantities,thep.u.l.capacitanceismoreeasilytunable.Changesin fortheBC-SRRcanbeachievedbyvaryingthestripwidth thesubstratethickness andthedi-electricconstantofthesubstrate, .However,Fig.5(d)showsthatvariationsof with arecancelledoutbytheassoci-atedvariationsof .Therefore,thereremaintwomainparam-etersfortuning: and .FortheEC-SRR, ismainlygov-ernedbytheringsspacing, ,andthepermittivity, ;twopa-rametersthatdonotaffect .Fig.6(a)and(b)showsthevari-ationoftheresonancefrequencyandthenormalizedelectricalsize(definedas ,with beingthefreespacewave-lengthatresonance)fortheEC-SRRandtheBC-SRRwithre-specttotheaboveparameters.InFig.6(a)thetuningparameteristhespacingbetweentherings(withthesubstratethicknessbeingconstant, 0.4mm)whereasthetuningparameterinFig.6(b)isthesubstratethickness.ItcanbeseenthatmuchsmallerelectricalsizescanbeachievedusingBC-SRRsinsteadofEC-SRRs:aparticlediameterofabout canbeob-tainedemployingBC-SRRsprintedonacommercialsubstrate ofapproximately mat10GHz.Evensmallerelectricalsizescouldbeachievedwiththinnersubstrates(suchasoxidelayers)and/orhigherdielectricpermittivitysubstrates(asferroelectricsubstrates,forinstance).Conversely,theelec-tricalsizeoftheEC-SRRsremainsalmostconstantforsmallvaluesofthespacingbetweentherings.Moreover,veryintenseelectricfieldsshouldappearattheringedgesinEC-SRRswithverysmallspacing,whichmaycausehighlossesand/ordielec-tricbreakdown.SincetheelectricfielddistributionissmootherinBC-SRRs,theseeffectsareexpectedtobelessimportantforthisparticle.Inthefollowing,theproposedlocalfieldtheoryisappliedtothecomputationofthedispersioncurvesofsomeNMPMsandLHMs.Thus,theNMPMandtheLHManalyzedin[6]arenewlyanalyzedusingourmodelinFig.7.Forcomparisonpur-poses,theresultsobtainedusingthecommercialelectromag-neticsolverMAFIAreportedin[6]arealsoshown.NoticethatthereisamismatchbetweenthefrequencypassbandsfortheLHMandtheNMPMthatappearsbothinnumericalcalcula-tionsandexperiments.TheexperimentalvaluesfortheLHM andtheabovemismatch extractedfrom[6,Fig.3],areequallyshowninthefigure.(Asisexplainedin[20],the mismatchiscloselyrelatedtothecrosspo-larizationeffectsappearingintheEC-SRR.)Thisplotillus-tratestheaccuracyoftheproposedsimpletheory:ourresultsfrtheleft-handedpassbandappearclosertotheexperimentsthanthoseobtainedin[6]byusingacommercialfull-wavesolver.Aswasmentioned,theuseofBC-SRRsforbuildingupmeta-materialsallowsforasignificanreductionintheelectricalsizeoftheunitcell.Thisfactwillbeillustratedinthefollowing.Thedispersioncharacteristicofanisotropic2-DLHM(seetheinsetinthefigure)madeusingsmall-sizeBC-SRRsisshowninFig.8.ThereportedLHMisdesignedfollowingthetheoryreportedin[9].Inthisdesign,theartificialplasmaissimu-latedbyanarrayofparallelmetallicplates[1]althoughforpracticalsimulationsonlyapairofplatesisneeded.Thisarraysimulatesalosslessplasmaforwavepropagationandelectricfieldpolarizationbothparalleltotheplates[1].Forthiswavepolarization,theeffectivedielectricsusceptibilityoftheartifi-cialplasmaisgivenby(17).ThediscreteNMPMismadebyplacingBC-SRRssymmetricallybetweentheplates.SincetheBC-SRRsresponseisisotropicforexternalmagnetizationper-pendiculartotheBC-SRRplane,theelectromagneticresponseofthedeviceisthenisotropicinthisplaneandforthisspecificpolarizationoftheincidentwave[9].Asitwastheoreticallyandexperimentallyshownin[9],theproposeddevicebehavesasanLHM(fortheappropriatewavepolarization)incertainfrequencybandthatliesabovetheresonancefrequencyoftheBC-SRR.Thisfacthasbeenadvantageouslyused,alongwiththedataprovidedinFig.6(b),todesignaLHMwhoseunitcellhasaverysmallelectricalsize.Thus,theresultsshowninFig.8havebeencomputedforBC-SRRswithexternalradius 0.6mmandringwidth 0.2mmprintedonadi-electricsubstrateof andthickness 0.01mm.Forthechosenlatticeparameter 1.5mmthedeviceshowsanLHMpassbandaround3.3GHz.Noticethatwithinthispass-bandthenormalizedelectricalsizeoftheunitcell( , thefree-spacewavelength)isapproximately0.015.Thiselec-tricalsizeisoneorderofmagnitudesmallerthanthepreviouslyreportedones[6],[7],[9].ThisfactprovestheusefulnessoftheproposedBC-SRRsfordesigningdiscreteLHMwithsmallsizeunitcells;namely,discreteLHMthatcanbeaccuratelyde-scribedbyacontinuousmediumapproach.V.CAself-consistentquasi-analyticalmodelforthepolarizabili-tiesofEC-SRRandBC-SRRhasbeenpresented.Theaccuracy 2578IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.51,NO.10,OCTOBER2003 (a) Fig.6.Resonancefrequencyandnormalizedelectricalsizeforseveral(a)EC-SRRand(b)BC-SRRwiththesameexternalradius 0.6mmandringwidth0.2mm,printedonseveralsubstrates.ofthismodelhasbeenvalidatedbyexperiments.Inparticular,anexperimentalsetupformeasuringtheresonancefrequencyandthemagneticpolarizabilitiesofbothtypesofSRRshasbeenproposedandrealized.SincetheSRRpolarizabilitieshavenotbeenpreviouslymeasured,theproposedexperimentalmethodforthecharacterizationofSRRsisoneofthemostrelevantcon-tributionsofthiswork.Theobtainedexperimentalresultshavebeensatisfactorilycomparedwiththeoreticalresultscomputedfollowingtheproposedmodel.Startingfromtheproposedmodel,andmakinguseofthewell-knownLorentztheory,alocalfieldmodelforSRR-basedNMPMhasbeendeveloped.Thismodelisalsousefulforcom-putingthedispersioncharacteristicsofLHMmadebyasuper-positionoftheaforementionedSRR-basedNMPMandwire-orparallelplate-madeartificialplasmas.ThislocalfieldmodelhasbeentestedbycomputingthedispersioncharacteristicsofsomepreviouslyreportedLHM,whichshowanacceptableagreementwithpreviouslyreportedtheoreticalandexperimentaldata.Thesimplicityandsmallnumericaleffortinvolvedintheproposedlocalfieldmodelmakesthisapproachtobeausefulandeffi-cientalternativefortheanalysisanddesignofdiscreteNMPMandLHM.Asanadditionaladvantageofthisapproach,itmay MARQUÉSetal.:EDGE-ANDBROADSIDE-COUPLEDSRR Fig.7.DispersioncurvesfortheLHMandNMPMmediareportedin[6].Theresultsreportedin[6,Fig.2(a)and(c)]arealsoshownforcomparisonpurposeTheexperimentalvaluesfortheLHMpassband, ,andforthemismatchbetweentheLHMandtheNMPMpassbands, ,obtainedfrom[6,Fig.3]areindicatedintherightaxisofthefigure. Fig.8.Dispersioncurvesforthe2-DisotropicLHMandNMPMshownintheinset.Thelatticeparameteris1.5mmandtheBC-SRRdimensionsare 0.6mmand0.2mm.TheBC-SRRareprintedonasubstrateofthickness0.01mmand=10 providefurtherphysicalinsightonsomecharacteristicsofthesemetamaterials(forinstance,intheanalysisofbianisotropicef-fectsinEC-SRRmadeLHM).Oncetheaccuracyoftheproposedmodelhasbeenchecked,acomparativeanalysisofbothEC-andBC-SRRhasbeencarriedout.Ithasbeenfoundthatthislatterparticlehastwomainad-vantagesovertheEC-SRR:isotropyintheplaneofthestructure(fornormallyincidentmagneticfield)andapotentiallymuchsmallerelectricalsize.Thefirstpropertycanbeusefulinde-signingisotropicLHMandNMPMforexperimentationinneg-ativerefractiveindexandrelatedphenomena.Thesecondprop-ertyisusefulfordesigningdiscretemetamaterialswithelectri-callysmallunitcells.Sincethesuitabilityofthecontinuous-mediumapproachcriticallydependsontheelectricalsizeoftheunitcell,thispropertymayresultinsubstantialimprovementsinthedesignofnewcontinuous-likemetamaterials. 2580IEEETRANSACTIONSONANTENNASANDPROPAGATION,VOL.51,NO.10,OCTOBER2003OMPUTATIONOFTHEOTALNDUCTANCE Letusassumeacurrent ontheringofFig.2.Sincethereisnofieldand/orcurrentdependenceontheazimuthalcoordinate themagnetostaticenergycanbecomputedas (20)where istheazimuthalcomponentofthevectormagneticpotential.Integratingbypartsandusingthat ,where isthe componentofthemagnetostaticfieldand thepartialderivativewithrespect ,itisfoundthat (21)where isdefinedby(14)and(15).Sincethecurrentsarerestrictedtothe plane, canbederivedfromascalarmagneticpotential ThisscalarmagneticpotentialmustsatisfyLaplace’s ,subjectedtothefol-lowingboundaryconditions: ; and TakingtheFourier-Besseltransform,whichisdefinedas theaboveproblemisanalyticallysolvedfor ,whichisfoundtobe wheretheupper(lower)signstandsfor ( ).Equa-tion(13)isobtainedafterintroducing into(21),using(22)and(23)andmakinguseoftheParsevaltheoremandtherelation Finally,if isassumedtobegivenby(14)–(15),aftersomealgebraicmanipulations,theringinductancecanbeob-tainedasthefollowingintegral: (24)where , ,andfunction isdefined (25)with and beingthe thorderStruveandBesselfunctions,respectively.[1]W.Rotman,“Plasmasimulationbyartificialdielectricsandparallel-platemedia,”IRETrans.AntennasPropagat.,vol.AP-10,pp.82–95,Jan.1962.[2]J.B.Pendry,A.J.Holden,W.J.Stewart,andI.Youngs,“Extremelylowfrequencyplasmonsinmetallicmesostructures,”Phys.Rev.Lett.,vol.76,pp.4773–4776,June1996.[3]J.M.Pitarke,F.J.GarcíaVidal,andJ.B.Pendry,“Effectiveelectronicresponseofasystemofmetalliccilinders,”Phys.Rev.B,vol.57,pp.15261–15266,June1998.[4]J.B.Pendry,A.J.Holden,D.J.Ribbins,andW.J.Stewart,“Magnetismfromconductorsandenhancednonlinearphenomena,”IEEETrans.Mi-crowaveTheoryTech.,vol.47,pp.2075–2084,Nov.1999.[5]V.G.Veselago,“Electrodynamicsofsubstanceswithsimultaneouslynegativeelectricalandmagneticproperties,”Sov.Phyis.USPEKHI,vol.10,pp.509–517,1968.[6]D.R.Smith,W.J.Padilla,D.C.Vier,S.C.Nemat-Nasser,andS.Schultz,“Compositemediumwithsimultaneouslynegativeperme-abilityandpermittivity,”Phys.Rev.Lett.,vol.84,pp.4184–4187,May[7]R.A.Shelby,D.R.Smith,S.C.Nemat-Nasser,andS.Schultz,“Mi-crowavetransmissionthroughatwo-dimensional,isotropic,left-handedAppl.Phys.Lett.,vol.78,pp.489–491,Jan.2001.[8]R.Marqués,J.Martel,F.Mesa,andF.Medina,“Left-handedmediasimulationandtrnsmissionofEMwavesinsubwavelengthsplit-ring-resonator-loadedmetallicwaveguides,”Phys.Rev.Lett.,vol.89,pp.13901(1)–13901(4),Oct.2002. ,“Anew2-Disotropicleft-handedmetamaterialdesign:Theoryandexperiment,”MicrowaveOpt.Tech.Lett.,vol.36,pp.405–408,Dec.[10]T.Weiland,R.Schumann,R.B.Greegor,C.G.Parazzoli,A.M.Vetter,D.R.Smith,D.C.Vier,andS.Schultz,“Abinitionumericalsimula-tionsofleft-handedmetamaterials:Comparisonofcalculationsandex-J.Appl.Phys.,vol.90,pp.5419–5424,Nov.2001.[11]P.MarkosandC.M.Soukoulis,“Numericalstudiesofleft-handedma-terialsandarraysofsplitringresonators,”Phys.Rev.B,vol.65,pp.036622(1)–036622(8),2002.[12]A.Sihvola,ElectromagneticMixingFormulasandApplica-.London,U.K.:IEE,1999.[13]R.E.Collin,FieldTheoryofGuidedWaves.NewYork:IEEE,1991.[14]Y.N.Kazantsev,M.V.Kostin,G.A.Kraftmakher,V.I.Pomonarenko,andV.V.Shevshenko,“Artificialparamagnetic,”J.Commun.Tech.Electron.,vol.39,pp.78–81,1994.[15]M.V.KostinandV.V.Shevshenko,“Artificialmagneticsbasedondoublecircularelements,”inProc.Chiral’94,3rdInt.WorkshoponChiral,Bi-IsotropicandBi-AnisotropicMedia,F.MariotteandJ.-P.Parneix,Eds.,Perigueux,France,May1994,pp.50–56.[16]A.J.BahrandK.R.Clausing,“Anapproximatemodelforartificialchiralmaterial,”IEEETrans.MicrowaveTheoryTech.,vol.42,pp.1592–1599,Dec.1994.[17]F.Mariotte,S.A.Tretyakov,andB.Sauviac,“Isotropicchiralcompositemodeling:Comparisonbetweenanalytical,numerical,andexperimentalMicrowaveOpt.Tech.Lett.,vol.7,pp.861–864,Dec.1994.[18]S.A.Tretyakov,F.Mariotte,C.R.Simovski,T.G.Kharina,andJ.-P.He-AnalyticalAntennaModelforChiralScatterers:CamparisonwithNumericalandExperimantalData,vol.44,pp.1006–1014,July1996.[19]M.M.I.SaadounandN.Engheta,“AreciprocalphaseshifterusinganovelpseudochiralorMicrowaveOpt.Tech.Lett.,vol.5,pp.184–188,Apr.1992.[20]R.Marqués,F.Medina,andR.Rafii-El-Idrissi,“Roleofbianisotropyinnegativepermeabilityandleft-handedmetamaterials,”Phys.Rev.B,vol.65,pp.144440(1)–144440(6),2002.[21]I.BahlandP.Bhartia,MicrowaveSolidStateCircuitDesign.NewYork:Wiley,1988.[22]F.TefikuandE.Yamashita,“Capacitancecharacterizationmethodforthick-conductormultipleplanarringstructuresonmultiplesubstrateIEEETrans.MicrowaveTheoryTech.,vol.40,pp.1894–1902,Oct.1992.[23]D.R.Smith,W.J.Padilla,D.Vier,R.Shelby,S.Nemat-Nasser,N.Kroll,andS.Schultz,“Left-handedmetamaterials,”inCrystalsandLightLocalizationinthe21stCentury,C.M.Soukoulis,Ed.Dordrecht,TheNetherlands:Kluwer,2001.[24]P.Gay-BalmazandO.J.F.Martin,“Electromagneticresonancesinin-dividualandcoupledsplit-ringresonators,”J.Appl.Phys.,vol.92,pp.2929–2936,Sept.2002.[25]H.A.Bethe,“Theoryofdiffractionbysmallholes,”Phys.Rev.,vol.66,pp.163–182,Oct.1944.[26]D.M.Pozar,MicrowaveEngineering.NewYork:Wiley,1998. MARQUÉSetal.:EDGE-ANDBROADSIDE-COUPLEDSRRRicardoMarqués(M’95)wasborninSanFernando,Cádiz,Spain.HereceivedthePh.D.degreefromtheUniversidaddeSevilla,Spain,in1987.HeiscurrentlyanAssociateProfessorwiththeDepartamentodeElectrónicayElectromagnetismo,UniversidaddeSevilla.Hismainscientificactivityhasbeenformanyyearsinthecomputer-aideddesignofplanartransmissionlinesandcircuitsatmicrowavefrequencies,withemphasisintheinfluenceandappli-cationsofcomplexmedia,suchasanisotropicdielectrics,magnetizedferritesandplasmas,aswellasbi(iso/aniso)tropicmaterials.Heisalsointerestedintheelectromagneticanalysisandcharacterizationofdiscretemetamaterials,in-cludingbianisotropicandLHM.Prof.Marqueshasbeenand/orisareviewerfortheIEEETRANSACTIONSICROWAVEHEORYANDECHNIQUES,theIEEETRANSACTIONSONNTENNASANDROPAGATION,andotherscientificandtechnicaljournalsandFranciscoMesa(M’02)wasborninCádiz,Spain,onApril1965.HereceivedtheLicenciadodegreeinJune1989andtheDoctordegreeinDecember1991,bothinphysics,fromtheUniversityofSeville,Spain.HeiscurrentlyanAssociateProfessorwiththeDepartmentofAppliedPhysic1,UniversityofSeville.Hisresearchinterestfocusonelectromagneticpropagation/radiationinplanarstructureswithgeneralanisotropicmaterialsandmetamaterials.JesúsMartelwasborninSeville,Spain,in1966.HereceivedtheLicenciadoandDoctordegreesinphysicsfromtheUniversityofSeville,in1989and1996,respectively.Since1992,hehasbeenwiththeDepartmentofAppliedPhysicsII,Univer-sityofSeville,where,in2000,hebecameanAssociateProfessor.Hiscurrentresearchinterestisfocusedonthenumericalanalysisofplanartransmissionlines,themodelingofplanarmicrostripdiscontinuities,thedesignofpassivemicrowavecircuits,microwavemeasurements,andartificialmedia.FranciscoMedina(M’90–SM’01)wasborninPuertoReal,Cádiz,Spain,inNovember1960.HereceivedtheLicenciado(withhonors)andDoctordegreesfromtheUniversityofSeville,Seville,Spain,in1983and1987,respectively,bothinphysics.From1986to1987,hespenttheacademicyearattheLaboratoiredeMi-croondesdel’ENSEEIHT,Toulouse,France,thankstoascholarshipoftheMinisteriodeEducaciónyCiencia,Spain,andMinistèredelaRechercheetlaTechnologie,France.From1985to1989,hewasanAssistantProfessorwiththeDepartmentofElectronicsandElectromagnetism,UniversityofSeville,andsince1990,hehasbeenanAssociateProfessorofelectromagnetism.HeisalsocurrentlyHeadoftheMicrowavesGroup,UniversityofSeville.Hisresearchinterestincludesanalyticalandnumericalmethodsforguidance,resonantandradiatingstructures,passiveplanarcircuits,periodicstructures,andtheinflu-enceofanisotropicmaterialsonsuchsystems.Heisalsointerestedinartificialmediamodelinganddesign.Dr.MedinawasamemberoftheTechnicalProgrammeCommittees(TPC)ofthe23rdEuropeanMicrowaveConference,Madrid,Spain,1993,theIS-RAMT’99,Málaga,Spain,1999,andmemberoftheTPCoftheMicrowavesSymposium2000,Tetouan,Morocco,2000.Hewasco-organizerofthework-NewTrendsonComputationalElectromagneticsforOpenandBoxedMi-crowaveStructures,Madrid,Spain,1993.HeisontheeditorialboardoftheIEEETRANSACTIONSONICROWAVEHEORYANDECHNIQUESandactsasreviewerforotherIEEE,InstitutionofElectricalEngineers(IEE),U.K.,andAmericanPhysicsAssociationjournals.Hewastherecipientoftwoscholar-