/
Ann.N.Y.Acad.Sci.ISSN0077-8923 Ann.N.Y.Acad.Sci.ISSN0077-8923

Ann.N.Y.Acad.Sci.ISSN0077-8923 - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
376 views
Uploaded On 2015-08-03

Ann.N.Y.Acad.Sci.ISSN0077-8923 - PPT Presentation

ANNALSOFTHENEWYORKACADEMYOFSCIENCES Issue BlavatnikAwardsforYoungScientists Platetectonicsandplanetaryhabitabilitycurrentstatus andfuturechallenges JunKorenaga DepartmentofGeologyandGeophysicsYaleU ID: 99447

ANNALSOFTHENEWYORKACADEMYOFSCIENCES Issue: BlavatnikAwardsforYoungScientists Platetectonicsandplanetaryhabitability:currentstatus andfuturechallenges JunKorenaga DepartmentofGeologyandGeophysics YaleU

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Ann.N.Y.Acad.Sci.ISSN0077-8923" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Ann.N.Y.Acad.Sci.ISSN0077-8923 ANNALSOFTHENEWYORKACADEMYOFSCIENCES Issue: BlavatnikAwardsforYoungScientists Platetectonicsandplanetaryhabitability:currentstatus andfuturechallenges JunKorenaga DepartmentofGeologyandGeophysics,YaleUniversity,NewHaven,Connecticut Addressforcorrespondence:JunKorenaga,DepartmentofGeologyandGeophysics,YaleUniversity,P.O.Box208109, NewHaven,CT06520-8109.jun.korenaga@yale.edu Platetectonicsisoneofthemajorfactorsaffectingthepotentialhabitabilityofaterrestrialplanet.Thephysicsofplate tectonicsis,however,stillfarfrombeingcomplete,leadingtoconsiderableuncertaintywhendiscussingplanetary habitability.Here,IsummarizerecentdevelopmentsontheevolutionofplatetectonicsonEarth,whichsuggesta radicallynewviewonEarthdynamics:convectioninthemantlehasbeenspeedingupdespiteitssecularcooling, andtheoperationofplatetectonicshasbeenfacilitatedthroughoutEarth’shistorybythegradualsubductionof waterintoaninitiallydrymantle.Theroleofplatetectonicsinplanetaryhabitabilitythroughitsinuenceon atmosphericevolutionisstilldifculttoquantify,and,tothisend,itwillbevitaltobetterunderstandacoupled core–mantle–atmospheresysteminthecontextofsolarsystemevolution. Keywords: terrestrialplanets;mantledynamics;planetarymagnetism;atmosphericevolution Introduction UnderwhatconditionscanaplanetlikeEarth—that is,aplanetthatcanhostlife—beformed?Thisques- tionofplanetaryhabitabilityhasbeenaddressed countlesstimesinthepast, 1–3 asitisdeeplycon- nectedtotheoriginoflife,perhapsthemostfasci- natingprobleminscience.Inthelastdecadeorso, researchactivitiesinthiseldhavebeeninvigorated, fueledbyarapidlyexpandingcatalogofextraso- larplanets. 4–6 Thehabitabilityofaplanetdepends onanumberoffactorsincluding,forexample,the massofthecentralstarandthedistancefromit, theatmosphericcomposition,orbitalstability,the operationofplatetectonics,andtheacquisitionof waterduringplanetaryformation.Themassofthe stardeterminestheevolutionofitsluminosity,and theheliocentricdistanceofaplanetaswellasthe volumeoftheatmosphereanditscompositionthen controlthesurfacetemperatureoftheplanet.The surfacetemperaturehastobeinacertainrange sothatwecanexpectthepresenceofliquidwa- terprovidedthatwaterexists,andorbitaldynamics affectthestabilityoftheplanetaryclimate.Plate tectonicscontrolstheevolutionoftheatmosphere throughvolcanicdegassingandsubduction,andit isalsoessentialfortheexistenceofaplanetarymag- neticeld,whichprotectstheatmospherefromthe interactionwiththesolarwind.Thesefactorsaf- fectingplanetaryhabitabilityarethusinterrelated tovariousdegrees.Whetherornotplatetectonics isoperatingonaplanet,forexample,wouldgive risetovastlydifferentscenariosforitsatmospheric evolution,affectingthedenitionofthehabitable heliocentricdistance,thatis,thehabitablezone. Thefocusofthiscontributionisonplatetecton- ics.Platetectonicsreferstoaparticularmodeof convectioninaplanetarymantle,whichismadeof silicaterocks,andsofaritisobservedonlyonEarth. Earth’ssurfaceisdividedintoadozenplatesorso, andtheseplatesaremovingatdifferentvelocities. Mostgeologicalactivities,suchasearthquakes,vol- caniceruption,andmountainbuilding,occurwhen differentplatesinteractatplateboundaries.There- alizationthatEarth’ssurfaceisactivelydeforming viaplatetectonicswasachievedthroughthe1960s and1970s,revolutionizingalmostallbranchesof earthsciences.Platetectonicsisafundamentalpro- cess,yetwestilldonotunderstanditinasatisfac- torymanner.Forexample,whereasthepresent-day doi:10.1111/j.1749-6632.2011.06276.x Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. 87 Platetectonicsandplanetaryhabitability Korenaga platemotionisknowninconsiderabledetail, 7 re- constructingpastplatemotionbecomesquitedif- cultonceweenterthePrecambrian(before540 millionyearsago),andeventhegrosscharacteristics ofancientplatetectonicsisuncertain. 8 Naturally, whenplatetectonicsstartedtooperateonEarthis stillcontroversial. 9 Partofthedifcultyoriginates inthepaucityofobservations;wehavefewerge- ologicalsamplesfromgreaterages.Thesituation isevenmorecompoundedbythelackoftheoret- icalunderstanding.Geophysicistshaveyettoform aconsensusonwhyplatetectonicstakesplaceon Earthandnotonotherterrestrial(e.g.,Earth-like) planetssuchasVenusandMars. 10 Thephysicsof platetectonicsisstillincomplete,andthiscreatesa seriousimpedimenttothediscussionofplanetary habitability.Underwhatconditionscouldplatetec- tonicsemergeonaplanet,andhowwoulditevolve throughtime?Withoutbeingabletoanswerthese questions,itwouldbenearlyimpossibletopredict theatmosphericevolutionofagivenplanetandthus itshabitability. Fundamentalissuesregardingthephysicsofplate tectonicsmaybeparaphrasedbythefollowingques- tions:howdidplatetectonicsevolveinthepast?,why doesplatetectonicstakeplaceonEarth?,andwhen didplatetectonicsrstappearonEarth?Consider- ableprogresshasbeenmadeontherstquestionin thelastdecade,andthisprogressturnsouttohelp betteraddressthesecondandthirdquestionsaswell. Inthefollowingsections,Iwillrevieweachquestion onebyoneandconcludewithasynthesisofcurrent statusaswellasmajortheoreticalchallengestobe tackledinthecomingyears. Howdidplatetectonicsevolve? Asplatetectonicsisjustonetypeofthermalcon- vection,itisreasonabletospeculateontheevo- lutionofplatetectonicsonthebasisofuidme- chanics.Earth’smantleinthepastwasgenerally hotterandthusprobablyhadlowerviscositythan present.Elementaryuidmechanicstellsusthat thisreductioninviscosityshouldhaveresultedin morevigorousconvection,thatis,higherheatux andfasterplatetectonics. 11 Geologicalsupportfor suchfasterplatetectonicshaslongbeenlacking, 12 butthislackofobservationalsupportisusuallynot takenseriouslybecausegeologicaldatabecomevery scarceandmoredifculttointerpretinthePrecam- brian.Thenotionoffasterplatetectonicsinthepast, however,hasbeenknowntopredictanunrealistic thermalhistorycalled“thermalcatastrophe,” 13 un- lessoneassumesthatEarthcontainsconsiderably moreheat-producingelementsthanthecomposi- tionmodelsofEarthindicate(Fig.1).Thiscanbe understoodbyconsideringthefollowingglobalheat balance: C dT dt = H ( t )– Q ( t ) , (1) where C istheheatcapacityoftheentireEarth, T is averageinternaltemperature, t istime, H isinter- nalheatproductionowingtothedecayofradioac- tiveisotopes,and Q isheatlossfromthesurface bymantleconvection.Bythenatureofradioactive decay,theinternalheatproductionmonotonically Figure1. Thermalhistorypredictionforfourcombinations ofheatowscalingandinternalheatproduction(seeRef.17for modelingdetail).Thenewscalingofplatetectonicspredictsrel- ativelyconstantheatuxindependentofmantletemperature, whereasclassicalscalingpredictshigherheatuxforhotterman- tle.TheUreyratioisameasureoftheamountofheat-producing elementsinthemantle,andthechemicalcompositionmodels ofEarthsuggestthatitspresent-dayvalue( Ur 0 = H(0)/Q(0) )is relativelylow,  0.3. 14 Constantheatuxwithalowpresent-day Ureyratio( solid )istheonlyonethatcanreproducetheobserved concave-downwardthermalhistorywithanaveragecoolingrate of  100KGa –1 ( circles ). 27 Inthisprediction,Earthwaswarming upduringtherstonebillionyears;suchasituationispossible withtheefcientcoolingofthemagmaocean. 50 Classicalscal- ingwithalowUreyratioresultsinthermalcatastrophe( gray line ).ClassicalscalingwithahighUreyratio( graydashedline ) canreproduceareasonablecoolingrate,butathermalhistory isconcaveupward.ConstantheatuxwithahighUreyratio ( dashedline )resultsintoocoldathermalhistory. 88 Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. Korenaga Platetectonicsandplanetaryhabitability decreaseswithtime,withaneffectivehalf-lifeof aboutthreebillionyears.Theconvectiveheatloss canbeparameterizedasafunctionofaveragetem- peratureas Q  T m , (2) wheretheexponent m ispredictedtobe  10bythe classicaltheoryofthermalconvection; 11 heatloss isextremelysensitivetoachangeininternaltem- perature.Thepresent-dayinternalheatproduction H(0) isonlyabout30%oftheconvectiveheatloss Q(0), 14 soabout70%ofheatlossmustbebalanced bytherapidcoolingofEarth;thatis,Earthmust havebeenmuchhotterthanatpresenttoexplain thepresent-daythermalbudget.Becauseconvective heatlossrisessharplywithincreasingtemperature (Eq.2),however,heatlossmusthavebeenextremely highinthepast,resultinginamoresevereimbal- ancebetweenheatproductionandheatloss,aswe considerfurtherbackintime.Thispositivefeedback iswhatcausesthermalcatastropheinthemiddleof theEarthhistory.Theonlywaytopreventit,while keepingtheclassicalscaling( m  10),istoassume thatinternalheatproductionisclosetoconvective heatlossatpresent,thatis, H(0)  Q(0) ,butthisvi- olatesourunderstandingofthechemicalbudgetof Earth.Thisconictbetweenthegeophysicaltheory ofmantleconvectionandthegeochemicalmodel ofEarthhasinspiredavarietyofproposals(see Ref.14forreview),manyofwhichhideanexcessive amountofheat-producingelementsinthedeep, inaccessiblemantle—apossiblebutrather adhoc solution. Anovelsolutionwassuggestedin2003based ontheeffectofmantlemeltingonmantleconvec- tion. 15 Fasterplatetectonicsinthepastisbasedon simpleuidmechanicsthatdonotcapturerealis- ticcomplicationsassociatedwithsilicaterocks.An importantdifferencefromclassicalthermalconvec- tionischemicaldifferentiation;whenthemantleis risingtowardthesurface,itusuallymelts,andthis meltingcanaffectmantledynamics.Uponmelt- ing,impuritiesinthemantle,mostnotablywater, arelargelypartitionedintothemeltphase,leav- ingtheresidualmantleverystiff. 16 Ahottermantle inthepastmeansmoreextensivemelting,making thickerstiffplatesandslowingdownplatetecton- ics.Consideringboththephysicsandchemistryof Earth’smantlethuspointstoanentirelyopposite prediction:slowerplatetectonicsinthepast,which isequivalenttousing m  0inEq.(2).Withthis nonclassicalscalingofplatetectonics,ithasbecome possibletoreconstructareasonablethermalhis- torywithoutviolatingthegeochemicalconstraints (Fig.1).Thissolution,whichwasfurtherelaborated in2006, 17 metconsiderableskepticismbecauseofits counterintuitivenature.Somedoubtedtherobust- nessofthegeochemicalconstraintsontheamount ofheat-producingelements,buttheuncertaintyof themantlecompositionhasbeenshowntobetight enoughtodiscountsuchleeway. 18 Otherssuspected thattherelativecontributionofheat-producingele- mentsmaybeincreasedbyloweringtheestimateon present-dayheatuxinstead, 19 , 20 butthispossibility hasbeenshowntobeinconsistentwithavailablege- ologicalrecords. 21 , 22 Additionally,thecounterintu- itivepredictionwasbasedonanapproximatetheory (knownastheboundarylayertheory)withseveral simplifyingassumptions,andsomequestionedthe validityofthisapproach. 23 Recently,however,the originalpredictionhasbeengivenfulltheoretical supportfromextensivenumericalsimulationand scalinganalysis. 24 , 25 Equallyimportantistheappearanceofnewde- cisiveobservations.In2008,thecompilationof thegeologicalrecordsofancientpassivemargins waspublished,whichindicatesthatthetempoof platetectonicsinthepastwasindeedslowerthan present. 26 In2010,thethermalhistoryofEarth’s uppermantlewasreconstructedbyapplyingthe latestpetrologicaltechniquetoanextensivecom- pilationofPrecambrianvolcanicrocks(Fig.1). 27 Theconcave-downwardnatureofthisthermalhis- toryisparticularlyimportant,asitprovidesstrong supportforthenotionofslowerplatetectonicsand therelativelylowabundanceofheat-producingel- ementsatthesametime;itisimpossibletorepro- ducethiscurvaturebyassumingfasterplatetec- tonicsforahottermantle.Mostrecently,anew constraintontheabundanceofheat-producingele- mentsinthemantlewasreportedbasedongeoneu- trinoobservations,whichfavorstherelatively lowabundanceasindicatedbythegeochemical estimate. 28 Theradicallynewviewontheevolutionofplate tectonics,therefore,hasbeencorroboratedboth theoreticallyandobservationallyinrecentyears,and ithasbecomedifculttorefutethenotionofslower platetectonicsinthepast,howevercounterintu- itiveitmightbe.Actually,whatiscounterintuitive Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. 89 Platetectonicsandplanetaryhabitability Korenaga isasubjectivematter,andinthiscase,itislargely educational.FasterplatetectonicsforahotterEarth ispredictedbytheuidmechanicsofanearlyiso- viscousuid.Notheoreticaljusticationexistsfor itsapplicabilitytoEarth’smantle.Theclassicalthe- oryisstillwidelyusedinplanetarysciences,but itsimplyfailstoreproducethethermalhistoryof thebest-understoodplanet(Fig.1).Therewouldbe littlemeritinextrapolatingatheorythatcannotex- plainEarthtootherterrestrialplanets,forwhichwe haveconsiderablyfewerobservationalconstraints. Thisisespeciallytruewhendiscussingthedynamics ofEarth-like,potentiallyhabitableplanets. Whydoesplatetectonicshappen? Therearetwofundamentallydifferentmodesof mantleconvection:(1)platetectonicsand(2)stag- nantlid. 29 Instagnant-lidconvection,theentiresur- faceofaplanetformsarigidsphericalshell,and convectioncantakeplaceonlyundertheshell.In platetectonics,thesurfaceisbrokenintopieces, mostofwhichcanreturntothedeepmantle,en- ablinggeochemicalcyclesbetweenthesurfaceand theinterior.Amongthefourterrestrialplanetsin oursolarsystem,Earthistheonlyplanetthatex- hibitsplatetectonics,andtheotherthree(Mercury, Venus,andMars)arebelievedtobeinthemode ofstagnantlid. 30 Itiseasytoexplainwhyplatetec- tonicsdoesnottakeplaceonotherplanets,because stagnant-lidconvectionisthemostnaturalmodeof convectioninamediumwithstronglytemperature- dependentviscosity,suchassilicaterocksthatcon- stituteaplanetarymantle. 29 Mantleviscosityis extremelyhighatatypicalsurfacecondition,sovir- tuallynodeformationisexpectedthere.Themode ofplatetectonicsispossible,therefore,onlywhen someadditionalmechanismexiststocompensate theeffectoftemperature-dependentviscosity.On- goingdebatesaremostlyregardingthisadditional weakeningmechanism. Inadditiontoductiledeformationcharacterized byviscosity,silicaterockscanalsodeformbybrittle deformationsuchascrackingandfaulting.Weak- eningbybrittlemechanismsislimitedbyfrictional strength, 31 however,andwithatypicalfrictional coefcientoforder1,brittleweakeningisinsuf- cienttocauseplatetectonics. 32 Inordertosimulate platetectonicsinnumericalmodels,therefore,ithas beenacommonpracticetoassumeamuchlower frictioncoefcient,butaphysicalmechanismthat couldleadtosuchalowcoefcienthasbeenpoorly understood. 33 Oneplausiblemechanismisareduc- tioninaneffectivefrictioncoefcientbyhighpore uidpressure,withwaterbeingtheuidmedium. Forplatetectonicstooccurwiththismechanism (i.e.,tobreakathickstagnantlid),however,wa- terhastobetransportedtosubstantialdepthsand thenisolatedfromthesurfacetoachievehighpore uidpressure.Themereexistenceofsurfacewater doesnotguaranteeeitheroftheserequirements.If deepwaterisconnectedtothesurface,forexam- ple,itwouldbeathydrostaticpressure,meaning thatporeuidpressureistoolowtoachieveasuf- cientlylowfrictioncoefcient.Inthisregard,the thermalcrackinghypothesis, 33 inwhicharigidlid isextensivelyfracturedbystrongthermalstressand thenlatersealedbyhydrationreactions,hassofar beentheonlytangiblemechanismthatcouldgen- erateplatetectonicsinthepresenceofsurfacewater (Fig.2). Whendiscussingthemodeofmantleconvec- tion,itisimportanttoavoidbeingtrappedina chicken-and-eggsituation.Thebendingofasub- ductingplate,forexample,mayfractureandweaken theplatebyhydration, 34 butonecannotinvokethis mechanismfortheonsetofplatetectonics;aweak- eningmechanismmustbeoperationalevenwith- outplatetectonics.Thesamecautionappliesto variousdynamicweakeningmechanismsassociated withearthquakedynamics. 35 Findingaphysicalmechanismforweakeningis justonesideofthecoin.Theothersideistounder- standthecriticalstrengthofasurfacelidthatcanbe overcomebyconvectivestressexertedbytheman- tlebelow.Bothsidesarenecessarytounderstand underwhatconditionsplatetectonicscanhappen. Thisissuehasbeenstudiedbyvariousauthorsus- ingnumericalsimulation(e.g.,Refs.36and37),but inmostpreviousattempts,thetemperaturedepen- dencyofmantleviscositywasnotstrongenoughto beEarth-like.Aquantitativecriterionfortheonset ofplatetectonicswasfoundin2010,fortherst timewithrealisticmantleviscosity,whileconduct- inganumberofnumericalsimulationstoestablish thescalingofplatetectonicsforthermalevolution modeling. 24 Revisitingthenotionofslowerancient platetectonicswiththisnewcriterionturnsout toyieldanintriguinginsightfortheinitiationof platetectonicsonEarth,asdiscussedinthenext section. 90 Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. Korenaga Platetectonicsandplanetaryhabitability primary thermal cracks secondary cracking caused by high residual stress and shallow serpentinization viscous lower half Figure2. Schematicillustrationforrheologicalevolutionwithinaplateunderoceans. 33 Optimalreleaseofthermalstressdeveloped inacoolingplateisachievedbyacascadecracksystem(primarycracks).Anyresidualstresswilleventuallybereleasedbysecondary crackpropagationifpartialcrackhealingbyshallowserpentinizationraisesthepressureoftrappedseawatertolithostaticpressure. Thestiffestpartofplateduetostrongtemperature-dependentviscositycanthusbepervasivelyweakenedbythermalcrackingand subsequenthydration. Whendidplatetectonicsstart? Basedoneldevidence,manygeologistswouldcon- curwiththeoperationofplatetectonicsbackto about3billionyearsago, 38 , 39 butanythingbeyond thatiscontroversial.Earth’shistoryisdividedinto foureons:theHadean(4.6–4.0billionyearsago),the Archean(4.0–2.5billionyearsago),theProterozoic (2.5–0.54billionyearsago),andthePhanerozoic (0.54billionyearsagotopresent).TheHadean– Archeanboundaryisdenedbytheageoftheold- estrockfoundonEarth.TheArchean–Proterozoic boundaryisdenedbytherelativeabundanceof rocks—thatis,rocksofArcheanagesaremuchrarer thanthoseofyoungerages.Thesedenitionsofthe geologicaltimescaleindicatethatndingunam- biguousgeologicaldatafortherstappearanceof platetectonicsonEarth’shistory,whichmightbe intheHadeanera, 40 wouldbequitechallenging. Buildingatheoreticalfoundationforthisproblem isthusofcriticalimportance. Asmentionedearlier,slowerplatetectonicsinthe pastresultsfromtheformationofthickerstiffplates bymoreextensivemelting.Thickerplatesslowdown platetectonics,butiftoothick,theycouldpoten- tiallyjeopardizetheoperationofplatetectonicsit- self.Thelikelihoodofshuttingdownplatetectonics inthepastcanbehighbecausemuchlowerconvec- tivestressisexpectedforahotter,lessviscousmantle beneathplates;thickerplatesandweakerconvective stressbothacttoimpedeplatetectonics.Indeed,a quantitativeassessmentofthispossibilityusingthe newcriterionindicatesthatplatetectonicsisviable onlyforthelastonebillionyears, 41 whichgrossly contradictswithgeologicalevidence. Onepossibleresolutiontothisconundrumcame fromanapparentlyunrelatedthreadofthought, thoughinhindsightitisanaturalextensionofthe existingtheory.Byincorporatinggeologicalcon- straintsonthepastsealevelintothermalevolution modeling,onecanreconstructthehistoryofocean volume,andslowerplatetectonicscorrespondsto greateroceanvolumeinthepast. 42 TheArchean oceansareestimatedtohavebeenabouttwiceasvo- luminousasthepresentoceans,andthisdifference inoceanvolumeisroughlyequivalenttotheamount ofwaterstoredinthepresentmantle.Earth’sman- tlecouldhavebeendrierandthusmoreviscousin thepast,andifthisexchangeofwaterbetweenthe mantleandtheoceansistakenintoaccount,theop- erationofplatetectonicsbecomesviablethroughout Earth’shistory. 24 , 41 Ithaslongbeensuggestedthat Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. 91 Platetectonicsandplanetaryhabitability Korenaga platetectonicscouldresultinnetwaterinuxtothe mantle, 43 , 44 andmodelingthemantleasanopen systemnowappearstobeanecessity,ratherthanan option. Platetectonics,therefore,couldhavestartedon Earthshortlyafterthesolidicationofaglobal magmaocean,whichprobablyexistedonlyforthe rstfewtensofmillionsofyearsofEarth’shistory. 45 OneinterestingndingfromEarth’sevolutionwith ahydratingmantleisthatthesubductionofwater isessentialtomaintainadrylandmass,whichin turnplaysanindispensableroleinstabilizingthe climate.Withoutadrylandmass,nosilicateweath- eringcouldtakeplacesothattheatmosphericcom- positioncouldnotberegulatedefcientlybycarbon cycle. 1 Summaryandoutlook Anemergingviewontheevolutionofplatetecton- icsonEarthcanbesummarizedbythefollowing. Platetectonicsstartedprobablyintheveryearly Earth,shortlyafterthesolidicationoftheputative magmaocean.Theonsetofplatetectonicswasfacili- tatedbyaninitiallydrymantle,whichhassincebeen slowlyhydratedbyplatetectonics.WhileEarthhas beencoolingdown,platetectonicshasbeenspeed- ingup,insteadofslowingdown.Thisisbecause acoldermantleleadstothinner,easilydeformable platesandbecausetheeffectofhydrationonviscos- itytendstocanceltheeffectoftemperature.This scenariohasbeenshowntobeinternallyconsis- tentanddynamicallyplausiblebythescalinglaws ofplatetectonics.Thoughbeingunconventionalin nearlyallaspects,itistheonlyhypothesisthatis consistentwithallofmajorobservationsrelevantto Earth’sevolution,includingpetrologicalconstraints onthethermalhistory,geochemicalconstraintson thethermalbudget,andgeologicalconstraintson thetempoofplatetectonics,themodeofmantle convection,andtheglobalsealevelchange. Wateristhusexpectedtoplayfundamentalroles intheinitiationofplatetectonicsanditsevolution overEarth’shistory.Thephysicsofelementarypro- cessesinvolvingwaterintheabovescenario,how- ever,stillrequiresconsiderablefuturedevelopment. Theplausibilityofthethermalcrackinghypothesis, forexample,needstobetestedfurtherbymod- elingthephysicochemicalevolutionofamultiple cracksystem.Thehypothesishasindirectobserva- tionalsupportthroughitsimpactoneffectivether- malexpansivity, 46 , 47 butmoredirectevidencemay beobtainedbylarge-scaleeldexperiments.Ad- ditionally,therateofwatertransporttothedeep mantlebysubductionshouldbequantiedfrom rstprinciples.Thoughitisahighlycomplexprob- leminvolvingpetrology,mineralphysics,anduid mechanics,itssolutionisessentialforatheorywith predictingpower. Ifaterrestrialplanetstartsoutwithadryman- tleandsurfacewater,whichappearstobealikely initialconditionforsubsolidusmantleconvection, 3 theonsetofplatetectonicsisprobablyjustiable. Predictingitssubsequentevolutionis,however,still aformidabletask.Oneofthemajoruncertainties istheamountofsurfacewater.Onthebasisofthe planetaryformationtheory,theoriginofEarth’swa- terisoftenconsideredtobeintheoutersolarsys- tem, 48 andthedeliveryofwaterisahighlystochastic process.Thequantityofwatertobedelivereddoes nothavetobelarge;oneoceanworthofwatercor- respondstoonly0.02%ofEarth’smass.Adifcult partishowtomaintainitoverthegeologicaltime. Theexistenceofaplanetarymagneticeld,which couldprovideashieldagainstsolarwinderosion, 49 dependsontherateofcorecooling.Earth’sther- malhistoryindicatesthatthemantlewaswarm- ingupintheearlyEarth(Fig.1).Thecorecould stillhavebeencoolingduringthattimeifthecore wasinitiallysuperheatedbyitsformationprocess, buttoanswerwhetherthecoolingratewassuf- cienttodriveaplanetarydynamo,modelingthe thermalevolutionofacoupledcore–mantlesystem wouldbecritical.Understandingtheatmospheric evolutionofagiventerrestrialplanet,oritshab- itabilityatlarge,therefore,requiresustocreatea uniedtheoreticalframeworkthatspansfromthe solarsystemevolutiontothedynamicsofplanetary interior. Acknowledgments ThisworkwassponsoredbyaMicrosoftA.Richard NewtonBreakthroughResearchAward.Theauthor thanksNormSleepforaconstructivereview. Conßictsofinterest Theauthordeclaresnoconictsofinterest. References 1.Kasting,J.F.&D.Catling.2003.Evolutionofahabitable planet. Annu.Rev.Astron.Astrophys. 41: 429–463. 92 Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. Korenaga Platetectonicsandplanetaryhabitability 2.Gaidos,E.,B.Deschenes,L.Dundon, etal .2005.Beyond theprincipleofplentitude:areviewofterrestrialplanet habitability. Astron.J. 5: 100–126. 3.Zahnle,K.,N.Arndt,C.Cockell, etal .2007.Emergenceofa habitableplanet. SpaceSci.Rev. 129: 35–78. 4.Marcy,G.W.&R.P.Butler.1998.Detectionofextrasolar giantplanets. Annu.Rev.Astron.Astrophys. 36: 57–97. 5.Rivera,E.J.,J.J.Lissauer,R.P.Butler, etal .2005.A  7.5M- circleplusplanetorbitingthenearbystar,GJ876. ApJ 634: 625–640. 6.Borucki,W.J. etal .2011.Characteristicsofplanetarycandi- datesobservedbyKepler,II:analysisoftherstfourmonths ofdata. ApJ . 736: 19,doi:10.1088/0004-637X/736/1/19. 7.DeMets,C.,R.G.Gordon&D.F.Argus.2010.Geologically currentplatemotions. Geophys.J.Int. 181: 1–80. 8.Bleeker,W.2003.ThelateArcheanrecord:apuzzleinca.35 pieces. Lithos 71: 99–134. 9.Condie,K.C.&V.Pease,Eds.2008. WhenDidPlateTectonics BeginonPlanetEarth? GeologicalSocietyofAmerica. 10.Bercovici,D.2003.Thegenerationofplatetectonicsfrom mantleconvection. EarthPlanetSci.Lett. 205: 107–121. 11.Schubert,G.,D.Stevenson&P.Cassen.1980.Wholeplanet coolingandtheradiogenicheatsourcecontentsoftheearth andmoon. J.Geophys.Res. 85: 2531–2538. 12.Kr ¨ oner,A.&P.W.Layer.1992.Crustformationandplate motionintheearlyArchean. Science 256: 1405–1411. 13.Christensen,U.R.1985.Thermalevolutionmodelsforthe Earth. J.Geophys.Res. 90: 2995–3007. 14.Korenaga,J.2008.Ureyratioandthestructureand evolutionofEarth’smantle. Rev.Geophys. 46:RG2007, doi:10.1029/2007RG000241. 15.Korenaga,J.2003.Energeticsofmantleconvectionand thefateoffossilheat. Geophys.Res.Lett. 30: 1437, doi:10.1029/2003GL016982. 16.Hirth,G.&D.L.Kohlstedt.1996.Waterintheoceanicman- tle:implicationsforrheology,meltextraction,andtheevo- lutionofthelithosphere. EarthandPlanetaryScienceLetters 144: 93–108. 17.Korenaga,J.2006.Archeangeodynamicsandthethermal evolutionofEarth.In ArcheanGeodynamicsandEnviron- ments .K.Benn,J.-C.Mareschal&K.Condie,Eds.:7–32. AmericanGeophysicalUnion,Washington,D.C. 18.Lyubetskaya,T.&J.Korenaga.2007.Chemicalcom- positionofEarth’sprimitivemantleanditsvariance, 1,methodsandresults. J.Geophys.Res. , 112: B03211, doi:10.1029/2005JB004223. 19.Grigne,C.,S.Labrosse&P.J.Tackley.2005.Convective heattransferasafunctionofwavelength:implicationsfor thecoolingoftheEarth. J.Geophys.Res. 110: B03409, doi:10.1029/2004JB003376. 20.Stevenson,D.J.2007.Aplanetaryscientistforeseesashiftin thedebateaboutEarth’sheatow. Nature 448: 843. 21.J.Korenaga.2007.Eustasy,supercontinentalinsulation,and thetemporalvariabilityofterrestrialheatux. EarthPlanet Sci.Lett. 257: 350–358. 22.Loyd,S.J.,T.W.Becker,C.P.Conrad, etal .2007.Timevari- abilityinCenozoicreconstructionsofmantleheatow:plate tectoniccyclesandimplicationsforEarth’sthermalevolu- tion. Proc.Nat.Acad.Sci.USA 104: 14266–14271. 23.Davies,G.F.2009.EffectofplatebeningontheUreyratio andthethermalevolutionofthemantle. EarthPlanetSci. Lett. 287: 513–518. 24.Korenaga.J.2010.Scalingofplate-tectonicconvection withpseudoplasticrheology. J.Geophys.Res. , 115: B11405, doi:10.1029/2010JB007670,2010. 25.RoseI.R.&J.Korenaga.2011.Mantlerheologyandthe scalingofbendingdissipationinplatetectonics. J.Geophys. Res. 116: B06404,doi:10.1029/2010JB008004. 26.Bradley,D.C.2008.Passivemarginsthroughearthhistory. EarthSci.Rev. 91: 1–26. 27.Herzberg,C.,K.Condie&J.Korenaga.2010.Thermalevo- lutionoftheEarthanditspetrologicalexpression. Earth PlanetSci.Lett. 292: 79–88. 28.Gando,A. etal .2011.PartialradiogenicheatmodelforEarth revealedbygeoneutrinomeasurements. NatureGeosci. 4: 647–651,doi:10.1038/ngeo1205. 29.Solomatov,V.S.1995.Scalingoftemperature-andstress- dependentviscosityconvection. Phys.Fluids 7: 266– 274. 30.Schubert,G.,D.L.Turcotte&P.Olson.2001. MantleCon- vectionintheEarthandPlanets .CambridgeUniversityPress, Cambridge,UnitedKingdom. 31.Scholz,C.H.2002. TheMechanicsofEarthquakesandFault- ing .CambridgeUniversityPress,Cambridge,UnitedKing- dom. 32.Moresi,L.&V.Solomatov.1998.Mantleconvectionwitha brittlelithosphere:thoughtsontheglobaltectonicstylesof theEarthandVenus. Geophys.J.Int. 133: 669–682. 33.Korenaga.J.2007.Thermalcrackingandthedeephy- drationofoceaniclithosphere:akeytothegenera- tionofplatetectonics? J.Geophys.Res. , 112: B05408, doi:10.1029/2006JB004502. 34.Ranero,C.R.,J.PhippsMorgan,K.McIntosh&C.Reichert. 2003.Bending-relatedfaultingandmantleserpentinization atthemiddleAmericatrench. Nature 425: 367–373. 35.Korenaga,J.2010.Onthelikelihoodofplatetectonicson super-Earths:doessizematter? ApJ 725: L43–L46. 36.Richards,M.A.,W.-S.Yang,J.R.Baumgardner&H.-P. Bunge.2001.Roleofalow-viscosityzoneinstabilizingplate tectonics:implicationsforcomparativeterrestrialplanetol- ogy. Geochem.Geophys.Geosys. 2: 2000GC000115. 37.Stein,C.,J.Schmalzl&U.Hansen.2004.Theeffectofrhe- ologicalparametersonplatebehaviorinaself-consistent modelofmantleconvection. Phys.EarthPlanetInter. 142: 225–255. 38.Hoffman,P.F.1997.TectonicgenealogyofNorthAmerica. In EarthStructure:AnIntroductiontoStructuralGeologyand Tectonics .B.A.vanderPluijm&S.Marshak,Eds.:459–464. McGraw-Hill,NewYork. 39.VanKranendonk,M.J.,R.H.Smithies,A.H.Hickman& D.C.Champion.2007.Review:seculartectonicevolution ofArcheancontinentalcrust:interplaybetweenhorizontal andverticalprocessesintheformationofthePilbaraCraton, Australia. TerraNova 19: 1–38. 40.Hopkins,M.D.,T.M.Harrison&C.E.Manning.2010. ConstraintsonHadeangeodynamicsfrommineralinclu- sionsin � 4Gazircons. EarthPlanetSci.Lett. 298: 367– 376. Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences. 93 Platetectonicsandplanetaryhabitability Korenaga 41.Korenaga,J.Thermalevolutionwithahydratingmantleand theinitiationofplatetectonicsintheearlyEarth. J.Geophys. Res. doi:10.1029/2011JB008410,inpress. 42.Korenaga,J.2008.Platetectonics,oodbasalts,andthe evolutionofEarth’soceans. TerraNova 20: 419–439. 43.Ito,E.,D.M.Harris&A.T.Anderson.1983.Alterationof oceaniccrustandgeologiccyclingofchlorineandwater. Geochim.Cosmochim.Acta 47: 1613–1624. 44.Smyth,J.R.&S.D.Jacobsen.2006.Nominallyanhydrous mineralsandEarth’sdeepwatercycle.In Earth’sDeepWater Cycle .S.D.Jacobsen&S.vanderLee,Eds.:1–11.American GeophysicalUnion. 45.Solomatov,V.2007.Magmaoceansandprimordialmantle differentiation.In TreatiseonGeophysics .Vol. 9 ,G.Schubert, Ed.:91–119.Elsevier,Amsterdam. 46.Korenaga,J.2007.Effectivethermalexpansivityof Maxwellianoceaniclithosphere. EarthPlanetSci.Lett. 257: 343–349. 47.Korenaga,T.&J.Korenaga.2008.Subsidenceofnormal oceaniclithosphere,apparentthermalexpansivity,andsea- oorattening. EarthPlanetSci.Lett. 268: 41–51. 48.Morbidelli,A.,J.Chambers,J.I.Lunine, etal .2000.Source regionsandtimescalesforthedeliveryofwatertotheEarth. Meteorit.PlanetSci. 35: 1309–1320. 49.Lundin,R.,H.Lammer&I.Ribas.2007.Planetarymag- neticeldsandsolarforcing:implicationsforatmospheric evolution. SpaceSci.Rev. 129: 245–278. 50.Sleep,N.H.2000.Evolutionofthemodeofconvection withinterrestrialplanets. J.Geophys.Res. 105: 17563– 17578. 94 Ann.N.Y.Acad.Sci.1260(2012)87–94 c  2012NewYorkAcademyofSciences.