/
Theme and variations on the concatenation product Theme and variations on the concatenation product

Theme and variations on the concatenation product - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
384 views
Uploaded On 2017-03-20

Theme and variations on the concatenation product - PPT Presentation

TheauthoracknowledgessupportfromtheprojectANR2010BLAN020202FREC 12SyntacticorderedmonoidLetLbealanguageofAThesyntacticpreorderofListherelation6Lde nedonAbyu6Lvifandonlyifforeveryxy2Axvy2Lxu ID: 329680

?TheauthoracknowledgessupportfromtheprojectANR2010BLAN020202FREC. 1.2SyntacticorderedmonoidLetLbealanguageofA.ThesyntacticpreorderofListherelation6Lde nedonAbyu6Lvifandonlyif foreveryx;y2A xvy2L)xu

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Theme and variations on the concatenatio..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ThemeandvariationsontheconcatenationproductJean-EricPin1?LIAFA,UniversityParis-DiderotandCNRS,France.Abstract.Theconcatenationproductisoneofthemostimportantop-erationsonregularlanguages.Itsstudyrequiressophisticatedtoolsfromalgebra, nitemodeltheoryandpro nitetopology.Thispapersurveysresearchadvancesonthistopicoverthelast ftyyears.Theconcatenationproductplaysakeyroleintwoofthemostimportantresultsofautomatatheory:Kleene'stheoremonregularlanguages[23]andSchutzen-berger'stheoremonstar-freelanguages[60].Thissurveyarticlesurveysthemostimportantresultsandtoolsrelatedtotheconcatenationproduct,includingconnectionswithalgebra,pro nitetopologyand nitemodeltheory.Thepaperisorganisedasfollows:Section1presentssomeusefulalgebraictoolsforthestudyoftheconcatenationproduct.Section2introducesthemainde nitionsontheproductanditsvariants.TheclassicalresultsaresummarizedinSection3.Sections4and5aredevotedtothestudyoftwoalgebraictools:Schutzenbergerproductsandrelationalmorphisms.ClosurepropertiesformthetopicofSection6.Hierarchiesandtheirconnectionwith nitemodeltheoryarepresentedinSections7and8.Finally,newdirectionsaresuggestedinSection9.1TheinstrumentsThissectionisabriefreminderonthealgebraicnotionsneededtostudythecon-catenationproduct:semigroupsandsemirings,syntacticorderedmonoids,freepro nitemonoids,equationsandidentities,varietiesandrelationalmorphisms.Moreinformationcanbefoundin[1{3,18,35,42,45].1.1SemigroupsandsemiringsIfSisasemigroup,thesetP(S)ofsubsetsofSisalsoasemiring,withunionasadditionandmultiplicationde ned,foreveryX;Y2P(S),byXY=fxyjx2X;y2YgInthissemiring,theemptysetisthezeroandforthisreason,isdenotedby0.Itisalsoconvenienttodenotesimplybyxasingletonfxg.Ifkisasemiring,wedenotebyMn(k)bethesemiringofsquarematricesofsizenwithentriesink. ?TheauthoracknowledgessupportfromtheprojectANR2010BLAN020202FREC. 1.2SyntacticorderedmonoidLetLbealanguageofA.ThesyntacticpreorderofListherelation6Lde nedonAbyu6Lvifandonlyif,foreveryx;y2A,xvy2L)xuy2LThesyntacticcongruenceofListherelationLde nedbyuLvifandonlyifu6Lvandv6Lu.ThesyntacticmonoidofListhequotientM(L)ofAbyLandthenaturalmorphism:A!A=LiscalledthesyntacticmorphismofL.Thesyntacticpreorder6LinducesanorderonthequotientmonoidM(L).TheresultingorderedmonoidiscalledthesyntacticorderedmonoidofL.Thesyntacticorderedmonoidcanbecomputedfromtheminimalautomatonasfollows.FirstobservethatifA=(Q;A;;q;F)isaminimaldeterministicautomaton,therelation6de nedonQbyp6qifforallu2A,qu2F)pu2Fisanorderrelation,calledthesyntacticorderoftheautomaton.Thenthesyntac-ticorderedmonoidofalanguageisthetransitionmonoidofitsorderedminimalautomaton.Theorderisde nedbyu6vifandonlyif,forallq2Q,qu6qv.Forinstance,letLbethelanguagefa;abag.Itsminimaldeterministicau-tomatonisrepresentedbelow: 1 2 3 4 0 a b a a;b b a b a;bTheorderonthesetofstatesis264,163and1;2;3;460.Indeed,onehas0u=0forallu2Aandthus,theformalimplication0u2F)qu2Fholdsforanystateq.Similarly,163sinceaistheonlywordsuchthat3a2Fandonealsohas1a2F.ThesyntacticmonoidofListhemonoidM=f1;a;b;ab;ba;aba;0gpresentedbytherelationsa2=b2=bab=0.Itssyntacticorderis1ab0,1ba0,aaba0,b0.2 1.3Freepro nitemonoidsWebrie\ryrecallthede nitionofafreepro nitemonoid.Moredetailscanbefoundin[1,45].A nitemonoidMseparatestwowordsuandvofAifthereisamorphism':A!Msuchthat'(u)='(v).Wesetr(u;v)=minjMjjMisa nitemonoidthatseparatesuandvgandd(u;v)=2r(u;v),withtheusualconventionsmin;=+1and21=0.ThendisametriconAandthecompletionofAforthismetricisdenotedbycA.TheproductonAcanbeextendedbycontinuitytocA.Thisextendedprod-uctmakescAacompacttopologicalmonoid,calledthefreepro nitemonoid.Itselementsarecalledpro nitewords.Inacompactmonoid,thesmallestclosedsubsemigroupcontainingagivenelementshasauniqueidempotent,denoteds!.Thisistrueinparticularina nitemonoidandinthefreepro nitemonoid.Onecanshowthateverymorphism'fromAintoa(discrete) nitemonoidMextendsuniquelytoaauniformlycontinuousmorphismb'fromcAtoM.Itfollowsthatifxisapro niteword,thenb'(x!)=b'(x)!.1.4EquationsandidentitiesLet'beamorphismfromAintoa nite[ordered]monoidMandletx;ybetwopro nitewordsofcA.Wesaythat'satis esthepro niteequationx=y[x6y]ifb'(x)=b'(y)[b'(x)6b'(y)].AregularlanguageofAsatis esapro niteequationifitssyntacticmor-phismsatis esthisequation.Moregenerally,wesaythatasetofregularlan-guagesLisde nedasetofpro niteequationsEifListhesetofallregularlanguagessatisfyingeveryequationofE.AlatticeoflanguagesisasetLoflanguagesofAcontaining;andAandclosedunder niteunionand niteintersection.Itisclosedunderquotientsif,foreachL2Landu2A,thelanguagesu1LandLu1arealsoinL.Itisprovedin[19]thatasetofregularlanguagesisalattice[Booleanalgebra]closedunderquotientifandonlyifitcanbede nedbyasetofpro niteequationsoftheformu6v[u=v].A nite[ordered]monoidMsatis estheidentityx=y[x6y]ifeverymorphismfromAintoMsatis esthisequation.ThesenotionscanbeextendedtosemigroupsbyconsideringmorphismsfromthefreesemigroupA+toa nitesemigroup.1.5VarietiesofmonoidsInthispaper,wewillonlyconsidervarietiesinEilenberg'ssense.Thus,forus,avarietyofsemigroupsisaclassof nitesemigroupsclosedundertakingsubsemigroups,quotientsand nitedirectproducts[18].Varietiesoforderedsemigroups,monoidsandorderedmonoidsarede nedanalogously[39].3 GivenasetEofidentities,wedenotebyJEKtheclassofall nite[ordered]monoidswhichsatisfyalltheidentitiesofE.Reiterman'stheorem[57]anditsextensiontoorderedstructures[53]statesthateveryvarietyof[ordered]monoids[semigroups]canbede nedbyasetofidentities.Forinstance,thevarietyoforderedsemigroupsJx!yx!6x!KisthevarietyoforderedsemigroupsSsuchthat,foreachidempotente2Sandforeachs2S,ese6e.Thefollowingvarietieswillbeusedinthispaper:thevarietyAofaperiodicmonoids,de nedbytheidentityx!+1=x!,thevarietyR[L]ofR-trivial[L-trivial]monoids,de nedbytheidentity(xy)!x=x![y(xy)!=x!]andthevarietyDA,whichconsistsoftheaperiodicmonoidswhoseregularJ-classesareidempotentsemigroups.Thisvarietyisde nedbytheidentitiesx!=x!+1and(xy)!(yx)!(xy)!=(xy)!.Wewillalsoconsidertwogroupvarieties:thevarietyGpofp-groups(foraprimep)andthevarietyGsolofsolublegroups.Finally,ifVisavarietyofmonoids,theclassofallsemigroupsSsuchthat,foreachidempotente2S,the\local"monoideSebelongstoV,formavarietyofsemigroups,denotedLV.Inparticular,thevarietyLIisthevarietyoflocallytrivialsemigroups,de nedbytheidentityx!yx!=x!.1.6VarietiesoflanguagesAclassoflanguagesCassociateswitheachalphabetAasetC(A)ofregularlanguagesofA.ApositivevarietyoflanguagesisaclassoflanguagesVsuchthat,forallalphabetsAandB,(1)V(A)isalatticeoflanguagesclosedunderquotients,(2)if':A!Bisamorphism,thenL2V(B)implies'1(L)2V(A).AvarietyoflanguagesisapositivevarietyVsuchthat,foreachalphabetA,V(A)isclosedundercomplement.WecannowstateEilenberg'svarietytheorem[18]anditscounterpartfororderedmonoids[39].Theorem1.1.LetVbeavarietyofmonoids.ForeachalphabetA,letV(A)bethesetofalllanguagesofAwhosesyntacticmonoidisinV.ThenVisavarietyoflanguages.Further,thecorrespondenceV!Visabijectionbetweenvarietiesofmonoidsandvarietiesoflanguages.Theorem1.2.LetVbeavarietyoforderedmonoids.ForeachalphabetA,letV(A)bethesetofalllanguagesofAwhosesyntacticorderedmonoidisinV.ThenVisapositivevarietyoflanguages.Further,thecorrespondenceV!Visabijectionbetweenvarietiesoforderedmonoidsandpositivevarietiesoflanguages.Aslightlymoregeneralde nitionwasintroducedbyStraubing[71].LetCbeaclassofmorphismsbetweenfreemonoids,closedundercompositionandcontainingalllength-preservingmorphisms.Examplesincludetheclassesofalllength-preservingmorphisms,ofalllength-multiplyingmorphisms(morphismssuchthat,forsomeintegerk,theimageofanyletterisawordoflengthk),4 allnon-erasingmorphisms(morphismsforwhichtheimageofeachletterisanonemptyword),alllength-decreasingmorphisms(morphismsforwhichtheimageofeachletteriseitheraletterortheemptyword)andallmorphisms.ApositiveC-varietyoflanguagesisaclassVofrecognisablelanguagessat-isfyingthe rstconditionde ningapositivevarietyoflanguagesandasecondcondition(20)if':A!BisamorphisminC,L2V(B)implies'1(L)2V(A).AC-varietyoflanguagesisapositiveC-varietyoflanguagesclosedundercom-plement.WhenCistheclassofnon-erasingmorphisms(forwhichtheimageofaletterisanonemptyword),weusethetermne-variety.Thesene-varietiesareessentiallythesamethingasEilenberg's+-varieties(see[49,p.260{261]foradetaileddiscussion)andtheycorrespondtovarietiesofsemigroups.1.7RelationalmorphismsArelationalmorphismbetweentwomonoidsMandNisafunctionfromMintoP(N)suchthat:(1)forallM2M,(m)=;,(2)12(1),(3)forallm;n2M,(m)(n)(mn)LetVbeavarietyof[ordered]semigroups.A[relational]morphism:M!Nissaidtobea[relational]V-morphismifforevery[ordered]semigroupRofNbelongingtoV,the[ordered]semigroup1(R)alsobelongstoV.Letmepointoutanimportantsubtlety.Thede nitionofa[relational]V-morphismadoptedinthispaperistakenfrom[44]anddi ersfromtheoriginalde nitiongivenforinstancein[68,42].Theoriginalde nitiononlyrequiresthat,foreachidempotente,the[ordered]semigroup1(e)alsobelongstoV.Inmanycasesthetwode nitionsareequivalent:forinstance,whenVisoneofthevarietiesA,Jx!yx!=x!K,Jx!y=x!K,Jyx!=x!KorLHwhereHisavarietyofgroups.However,thetwode nitionsarenotequivalentforthevarietyJx!yx!6x!K.2Themeandvariations:theconcatenationproductWenowcometothemaintopicofthisarticle.Justlikeapieceofclassicalmusic,theconcatenationproductincludesthemeandvariations.2.1MainthemeTheproduct(orconcatenationproduct)ofthelanguagesL0;L1;:::;LnofAisthelanguageL0L1Ln=fu0u1unju02L0;u12L1;;un2Lng5 AlanguageLofAisamarkedproductofthelanguagesL0;L1;:::;LnifL=L0a1L1anLnforsomelettersa1;:::;anofA.2.2ThreevariationsVariationsincludetheunambiguous,deterministic,bideterministicandmodularproducts,thatarede nedbelow.Unambiguousproduct.AmarkedproductL=L0a1L1anLnissaidtobeunambiguousifeverywordofLadmitsauniquedecompositionoftheformu=u0a1u1anunwithu02L0,...,un2Ln.Forinstance,themarkedproductfa;cgaf1gbfb;cgisunambiguous.Deterministicproduct.Awordxisapre x[sux]ofaworduifthereisawordvsuchthatu=xv[u=vx].Itisaproperpre x[sux]ifx=u.AsubsetCofA+isapre x[sux]codeififnoelementofCisaproperpre x[sux]ofanotherelementofC.AmarkedproductL=L0a1L1anLnofnnonemptylanguagesL0,L1,...,LnofAisleft[right]deterministicif,for16i6n,thesetL0a1L1Li1ai[aiLianLn]isapre x[sux]code.ThismeansthateverywordofLhasauniquepre x[sux]inL0a1L1Li1ai[aiLianLn].Itisobservedin[9,p.495]thatthemarkedproductL0a1L1anLnisdeterministicifandonlyif,for16i6n,thelanguageLi1aiisapre xcode.Sincetheproductoftwopre xcodesisapre xcode,anyleft[right]deterministicproductofleft[right]deterministicproductsisleft[right]deterministic.Amarkedproductissaidtobebideterministicifitisbothleftandrightdeterministic.Modularproductoflanguages.LetL0;:::;LnbelanguagesofA,leta1;:::;anbelettersofAandletrandpbeintegerssuchthat06rp.Wede nethemodularproductofthelanguagesL0;:::;Lnwithrespecttorandp,denoted(L0a1L1anLn)r;p,asthesetofallwordsuinAsuchthatthenumberoffactorizationsofuintheformu=u0a1u1anun,withui2Lifor06i6n,iscongruenttormodulop.Alanguageisap-modularproductofthelanguagesL0;:::;Lnifitisoftheform(L0a1L1anLn)r;pforsomer.3ClassicalareaThemostimportantresultsontheconcatenationproductareduetoSchutzen-berger.TheyconcernthesmallestBooleanalgebraoflanguagesclosedundermarkedproductoroneofitsvariants.6 Recallthatthesetofstar-freelanguagesisthesmallestBooleanalgebraoflanguagesofAwhichisclosedundermarkedproduct.Theorem3.1(Schutzenberger[60]).Aregularlanguageisstar-freeifandonlyifitssyntacticmonoidisaperiodic.Thereareessentiallytwoproofsofthisresult.Schutzenberger'soriginalproof[60,35],slightlysimpli edin[30],worksbyinductionontheJ-depthofthesyn-tacticsemigroup.Schutzenberger'sproofactuallygivesastrongerresultsinceitshowsthatthestar-freelanguagesformthesmallestBooleanalgebraoflan-guagesofAwhichisclosedundermarkedproductsoftheformL!LaAandAaL.Inotherwords,markedproductswithAsucetogenerateallstar-freelanguages.Theotherproof[17,28]makesuseofaweakformoftheKrohn-Rhodestheorem:everyaperiodicsemigroupdividesawreathproductofcopiesofthemonoidU2=f1;a;bg,givenbythemultiplicationtableaa=a,ab=b,ba=bandbb=b.Theorem3.1providesanalgorithmtodecidewhetheragivenregularlan-guageisstar-free.Thecomplexityofthisalgorithmisanalysedin[16,65].Letusde neinthesamewaythesetofunambiguous[rightdeterministic,leftdeterministic]star-freelanguagesasthesmallestBooleanalgebraoflanguagesofAcontainingthelanguagesoftheformB,forBA,whichisclosedunderunambiguous[leftdeterministic,rightdeterministic]markedproduct.Thealgebraiccharacterizationsoftheseclassesarealsoknown.Theorem3.2(Schutzenberger[61]).Aregularlanguageisunambiguousstar-freeifandonlyifitssyntacticmonoidbelongstoDA.Onecanshowthatthesetofunambiguousstar-freelanguagesofAisthesmallestsetoflanguagesofAcontainingthelanguagesoftheformB,forBA,whichisclosedunder nitedisjointunionandunambiguousmarkedproduct.ThelanguagescorrespondingtoDAadmitseveralothernicecharacterizations:see[72]forasurvey.Deterministicproductswerealsostudiedin[61].Alternativedescriptionsoftheselanguagescanbefoundin[18,13].Theorem3.3([18]).Aregularlanguageisleft[right]deterministicstar-freeifandonlyifitssyntacticmonoidisR-trivial[L-trivial].Similarresultsareknownforthep-modularproduct[18,66,73,76,29,78{80].Theorem3.4.Letpbeaprime.AlanguageofAbelongstothesmallestBooleanclosedunderp-modularproductifandonlyifitssyntacticmonoidisap-group.Theorem3.5.AlanguageofAbelongstothesmallestBooleanclosedunderp-modularproductforallprimepifandonlyifitssyntacticmonoidisasolublegroup.7 Finally,onemayconsidertheproductandthep-modularproductssimulta-neously.Theorem3.6.AlanguageofAbelongstothesmallestBooleanclosedunderproductandunderp-modularproductforallprimepifandonlyifallthegroupsinitssyntacticmonoidaresoluble.Seealso[75]foranotherdescriptionofthisvarietyoflanguages.4Thegroundbass:SchutzenbergerproductsTheSchutzenbergerproductisthe rstalgebraictoolusedtostudytheconcate-nationproduct.Itwas rstde nedbySchutzenberger[60]andlatergeneralizedbyStraubing[67].Anintuitiveconstruction,relatedtothelinearrepresenta-tionofasuitabletransducer,wasgivenin[46,47]andisbrie\rysketchedbelow.MoreinformationontransducersandtheirlinearrepresentationscanbefoundinSakarovitch'sbook[59].4.1TransducersfortheproductTheconstructiongivenin[46,47]reliesonthefollowingobservation.LetandabethetransductionsfromAtoAAde nedby(u)=f(u1;u2)ju1u2=uga(u)=f(u1;u2)ju1au2=ugItiseasytoseethatthetwotransducerspicturedbelowrealisethesetrans-ductions.Inthese gures,cisagenericletterandthesymboljisaseparatorbetweentheinputletterandtheoutput. 1 2 1 2 cj(c;1) 1j(1;1) cj(1;c) cj(c;1) aj(1;1) cj(1;c)Thetransducerontheleft[right]realizes[a].NowL0L1=1(L0L1)andL0aL1=1a(L0L1)andthisequalityallowsonetocomputeamonoidrecognisingL0L1andL0aL1,givenmonoidsrecognisingL0andL1.Thisconstructioncanbereadilyextendedto(marked)productsofseverallanguages.Forinstance,givena1;:::;an2A,thetransductionde nedby(u)=f(u0;;un)2(A)n+1ju0a1u1anun=ugisrealisedbythetrans-ducer8 1 2::: n1 n cj(c;1) a1j(1;1) cj(1;c) cj(1;c) anj(1;1) cj(1;c)andthemarkedproductL0a1L1anLnisequalto1(L0L1Ln).Abitofalgebraisnowrequiredtomakefulluseofthistransduction.4.2LinearrepresentationsTheRbethesemiringP(AA).ThenforeachworduinA,a(u)=(u)1;2,where:A!M2(R)isde nedby(a)=(c;1)(1;1)0(1;c)and(c)=(c;1)00(1;c)ifc=aIndeed,foreachu2A,onegets(u)=(u;1)f(u0;u1)ju0au1=ug0(1;u)whichgivestheresult.Letnow0:A!M0[1:A!M1]beamonoidmorphismrecognisingthelanguageL0[L1]andletM=M0M1.Let=01.ThenisamonoidmorphismfromAAintoM,whichcanbe rstextendedtoasemiringmorphismfromAAtoP(M)andthentoasemiringmorphismfromM2(AA)toM2(P(M)),alsodenotedby.ItfollowsthatisamorphismfromAintoM2(P(M))anditisnotdiculttoseethatthismorphismrecognisesthelanguage1a(L0L1),thatis,L0aL1.Further,ifuisawordofA,thematrix(u)hastheform(m0;1)P0(1;m1)forsomem02M0,m12M1andPM0M1.Inparticular,L0aL1isrecog-nisedbythemonoidofmatricesofthisform.ThismonoidistheSchutzenbergerproductofthemonoidsM0andM1.Asimilarrepresentationcanbegivenforthetransducerandthisleadstothede nitionoftheSchutzenbergerproductofn+1monoidsM0;:::;Mn.Infact,onecangiveaslightlymoregeneralde nition.LetM=M0Mn,letkbeasemiringandletk[M]bethemonoidalgebraofMoverk.TheSchutzenbergerproductoverkofthemonoidsM0;:::;Mn,isthesubmonoidofMn+1(k[M])madeupofmatricesm=(mi;j)suchthat(1)mi;j=0,fori�j,(2)mi;i=(1;:::;1;mi;1;:::;1)forsomemi2Mi,(3)mi;j2k[11MiMj11],forij.9 Thismonoidisdenotedk}(M0;:::;Mn).The rstconditionmeansthatthematricesareuppertriangular,thesecondonethattheentrymi;icanbeidenti edwithanelementofMi.WhenkistheBooleansemiring,thenk[M]isisomorphictoP(M)andtheSchutzenbergerproductissimplydenoted}(M0;:::;Mn).Forinstance,amatrixof}3(M1;M2;M3)willhavetheform0@s1P1;2P1;30s2P2;300s31Awithsi2Mi,P1;2M1M2,P1;3M1M2M3andP2;3M2M3.The rstpartofthenextpropositionisduetoSchutzenberger[60]forn=1andtoStraubing[67]forthegeneralcase.Proposition4.1.LetL=L0a1L1anLnbeamarkedproductandletMibethesyntacticmonoidofLi,for06i6n.ThentheSchutzenbergerproduct}n(M0;:::;Mn)recognisesL.Asimilarresultholdsforthep-modularproduct,foraprimep,bytakingk=Fp,the eldwithpelements[34,37,79].Proposition4.2.LetL=(L0a1L1anLn)r;pbeap-modularproductandletMibethesyntacticmonoidofLi,for06i6n.ThentheSchutzenbergerproductFp}n(M0;:::;Mn)recognisesL.InviewofProposition4.1,anaturalquestionarises:whatarethelanguagesrecognisedbyaSchutzenbergerproduct?IntheBooleancase,theanswerwas rstgivenbyReutenauer[58]forn=2andbytheauthor[33]inthegeneralcase(seealso[80,63]).Thecasek=FpwastreatedbyWeil[79,Theorem2.2].Theorem4.3.AlanguageisrecognisedbytheSchutzenbergerproductofM0,...,MnifandonlyifitbelongstotheBooleanalgebrageneratedbythemarkedproductsoftheformLi0a1Li1asLiswhere06i0i1is6nandLijisrecognisedbyMijfor06j6s.Theorem4.4.AlanguageisrecognisedbythemonoidFp}(M0;:::;Mn)ifandonlyifitbelongstotheBooleanalgebrageneratedbythep-modularproductsoftheform(Li0a1Li1asLis)r;pwhere06i0i1is6nandLijisrecognisedbyMijfor06j6s.IntheBooleancase,itispossibletogiveanorderedversionofTheorem4.3[54,44].Indeed,the(Boolean)Schutzenbergerproductcanbeorderedbyreverseinclusion:P6P0ifandonlyiffor16i6j6n,Pi;jP0i;j.Thecorrespondingorderedmonoidisdenoted}+n(M0;:::;Mn)andiscalledtheorderedSchutzen-bergerproductofM1,...,Mn.Theorem4.5.AlanguageisrecognisedbytheorderedSchutzenbergerproductofM0,...,MnifandonlyifitbelongstothelatticegeneratedbythemarkedproductsoftheformLi0a1Li1asLiswhere06i0i1is6nandLijisrecognisedbyMijfor06j6s.10 4.3AlgebraicpropertiesoftheSchutzenbergerproductItfollowsfromthede nitionoftheSchutzenbergerproductthatthemapsendingamatrixtoitsdiagonalisamorphismfromk}(M0;:::;Mn)toM.Thepropertiesofthismorphismwere rstanalysedbyStraubing[67]andbytheauthor[36,54,44]intheBooleancaseandbyWeil[80,Corollary3.6]whenk=Fp.Seealso[4].Proposition4.6.Themorphism:}(M0;:::;Mn)!MisaJx!yx!6x!K-morphism.Proposition4.7.Themorphism:Fp}(M0;:::;Mn)!MisaLGp-morphism.5Passacaglia:pumpingpropertiesThesecondmethodtostudytheproductistouserelationalmorphisms.ThistechniquewasinitiatedbyStraubing[68]andlaterre nedin[10,8,36,44,50,54].We rststatethemainresultundertheformofapumpinglemmabeforeturningtoamorealgebraicformulation.LetL=L0a1L1anLnbeamarkedproductofregularlanguages.Theorem5.1.LetuandvbewordsofAsatisfyingthefollowingproperties:(1)u2Luand(2)foreachi2f0;:::;ng,u2Liuanduvu6Liu.Thenforallx;y2A,theconditionxuy2Limpliesxuvuy2L.Anotherpossibleformulationofthetheoremistosaythat,undertheassump-tions(1)and(2),Lisclosedundertherewritingsystemu!uvu.Wenowturntothealgebraicversionofthisstatement.Foreachi,letLibealanguageofA,leti:A!M(Li)beitssyntacticmorphismandlet:A!M(L0)M(L1)M(Ln)bethemorphismde nedby(u)=(0(u);1(u);:::;n(u)).Finally,let:A!M(L)bethesyntacticmorphismofL.Theorem5.1canbereformulatedasapropertyoftherelationalmorphism(seepicturebelow)=1:M(L)!M(L0)M(L1)M(Ln)M(L)M(L0)M(L1)M(Ln)A  =1 11 Theorem5.2.(1)TherelationalmorphismisarelationalJx!yx!6x!K-morphism.(2)Iftheproductisunambiguous,itisarelationalJx!yx!=x!K-morphism.(3)Iftheproductisleftdeterministic,itisarelationalJx!y=x!K-morphism.(4)Iftheproductisrightdeterministic,itisarelationalJyx!=x!K-morphism.Asimilarresultholdsforthep-modularproduct.Proposition5.3.LetL=(L0a1L1anLn)r;pbeap-modularproduct.Therelationalmorphism:M(L)!M(L0)M(Ln)isarelationalLGp-morphism.Theorem5.2isoftenusedinthefollowingweakerform.Corollary5.4.Therelationalmorphism:M(L)!M(L0)M(L1)M(Ln)isanaperiodicrelationalmorphism.6Chaconne:ClosurepropertiesTheresultsofSection3giveadescriptionofthesmallestBooleanalgebraclosedundermarkedproductanditsvariants.ThenextstepwouldbetocharacterizeallBooleanalgebrasclosedundermarkedproductanditsvariants.Arelatedproblemistodescribetheclassesofregularlanguagesclosedunderunionandmarkedproduct.Bothproblemshavebeensolvedinthecaseofavarietyoflanguages,butthedescriptionoftheseresultsrequiresanalgebraicde nition.LetVbeavarietyof[ordered]monoidsandletWbeavarietyoforderedsemigroups.Theclassofall[ordered]monoidsMsuchthatthereexistsaV-relationalmorphismfromMintoamonoidofVisavarietyof[ordered]monoids,denotedW1V.6.1VarietiesclosedunderproductVarietiesclosedundermarkedproductsweredescribedbyStraubing[66].Theorem6.1.LetVbeavarietyofmonoidsandletVbetheassociatedvari-etyoflanguages.ForeachalphabetA,letW(A)bethesmallestBooleanalgebracontainingV(A)andclosedunderproduct.ThenWisavarietyandtheasso-ciatedvarietyofmonoidsisA1V.ThisimportantresultcontainsTheorem3.1asaparticularcase,whenVisthetrivialvarietyofmonoids.ExamplesofvarietiesVsatisfyingtheequalityA1V=Valsoincludethevarietyofmonoidswhosegroupsbelongtoagivenvarietyofgroups.Theorem6.1hasbeenextendedtoC-varietiesin[15,Theorem4.1].12 6.2VarietiesclosedundermodularproductFinally,letusmentiontheresultsofWeil[80].AsetoflanguagesLofAisclosedunderp-modularproductif,foranylanguageL0;:::;Ln2L,foranylettera1;:::;an2Aandforanyintegerrsuchthat06rp,(L0a1L1anLn)r;p2L.AsetoflanguagesLofAisclosedundermodularproductifitisclosedunderp-modularproduct,foreachprimep.Theorem6.2.Letpbeaprimenumber,letVbeavarietyofmonoidsandletVbetheassociatedvarietyoflanguages.ForeachalphabetA,letW(A)bethesmallestBooleanalgebracontainingV(A)andclosedunderp-modularproduct.ThenWisavarietyoflanguagesandtheassociatedvarietyofmonoidsisLG1pV.GivenavarietyofgroupsH,let HbethevarietyofallmonoidswhosegroupsbelongtoH.Theorem6.3.Letpbeaprimenumber,letVbeavarietyofmonoidsandletVbetheassociatedvarietyoflanguages.ForeachalphabetA,letW(A)bethesmallestBooleanalgebracontainingV(A)andclosedunderproductandp-modularproduct.ThenWisavarietyoflanguagesandtheassociatedvarietyofmonoidsisL G1pV.Theorem6.4.LetVbeavarietyofmonoidsandletVbetheassociatedvarietyoflanguages.ForeachalphabetA,letW(A)betheBooleanalgebracontainingV(A)andclosedundermodularproduct.ThenWisavarietyoflanguagesandtheassociatedvarietyofmonoidsisL Gsol1V.6.3PolynomialclosureLetLbealatticeoflanguages.ThepolynomialclosureofListhesetoflan-guagesthatare niteunionsofmarkedproductsoflanguagesofL.ItisdenotedPol(L).Similarly,theunambiguouspolynomialclosureofListhesetoflan-guagesthatare niteunionsofunambiguousmarkedproductsoflanguagesofL.ItisdenotedUPol(L).Theleftandrightdeterministicpolynomialclosurearede nedanalogously,byreplacing\unambiguous"by\left[right]deterministic".TheyaredenotedDlPol(V)[DrPol(V)].Analgebraiccharacterizationofthepolynomialclosureofavarietyoflan-guageswas rstgivenin[51,54].Itwasextendedtopositivevarietiesin[44].Theorem6.5.LetVbeavarietyof[ordered]monoidsandletVbetheassoci-ated[positive]varietyoflanguages.ThenPol(V)isapositivevarietyoflanguagesandtheassociatedvarietyoforderedmonoidsisJx!yx!6x!K1V.Theorem6.5hasbeenextendedtoC-varietiesin[49,Theorem7.2].Fortheunambiguousproduct,onehasthefollowingresult[32,50,4].13 Theorem6.6.LetVbeavarietyofmonoidsandletVbetheassociatedvarietyoflanguages.ThenUPol(V)isavarietyoflanguagesandtheassociatedvarietyoforderedmonoidsisJx!yx!=x!K1V.Fortheleft(resp.right)deterministicproduct,similarresultshold[32,50].Theorem6.7.LetVbeavarietyofmonoidsandletVbetheassociatedvarietyoflanguages.ThenDlPol(V)(resp.DrPol(V))isavarietyoflanguages,andtheassociatedvarietyofmonoidsisJx!y=x!K1V(resp.Jyx!=x!K1V).ItisknownthatthesmallestnontrivialvarietyofaperiodicmonoidsisthevarietyJ1=Jxy=yx;x=x2K.OnecanshowthatJx!y=x!K1J1isequaltothevarietyRofallR-trivialmonoids,whichisalsode nedbytheidentity(xy)!x=(xy)!.Thisleadstothefollowingcharacterization[18,13].Corollary6.8.ForeachalphabetA,R(A)consistsofthelanguageswhicharedisjointunionsoflanguagesoftheformA0a1A1a2anAn,wheren�0,a1;:::an2AandtheAi'saresubsetsofAsuchthatai=2Ai1,for16i6n.AdualresultholdsforL-trivialmonoids.Finally,Jx!yx!=x!K1J1=DA,whichleadstothedescriptionofthelanguagesofDAgivenhereinabove.6.4BacktoidentitiesAgeneralresultof[52]permitstogiveidentitiesde ningthevarietiesoftheformV1W.Inparticular,wegetthefollowingresults.Theorem6.9.LetVbeavarietyofmonoids.Then(1)A1Visde nedbytheidentitiesoftheformx!+1=x!,wherexisapro nitewordsuchthatVsatis estheidentityx=x2.(2)Jx!yx!=x!K1Visde nedbytheidentitiesoftheformx!yx!=x!,wherex;yarepro nitewordssuchthatVsatis estheidentityx=y=x2.(3)Jx!yx!6x!K1Visde nedbytheidentitiesoftheformx!yx!6x!,wherex;yarepro nitewordssuchthatVsatis estheidentityx=y=x2.7HierarchiesandbridgesTheBooleanalgebraBLgeneratedbyalatticeLiscalleditsBooleanclosure.Inparticular,BPol(L)denotestheBooleanclosureofPol(L).Concatenationhierarchiesarede nedbyalternatingBooleanoperationsandpolynomialoperations(unionandmarkedproduct).Moreprecisely,letLbeasetofregularlanguages(ormoregenerally,aclassoflanguages).TheconcatenationhierarchybuiltonListhesequenceLnde nedinductivelyasfollows1:L0=Land,foreachn�0: 1Intheliterature,concatenationhierarchiesareusuallyindexedbyhalfintegers,butitseemssimplertouseintegers.14 (1)L2n+1isthepolynomialclosureofthelevel2n,(2)L2n+2istheBooleanclosureofthelevel2n+1.Thenextresultssummarizetheresultsof[5,6,54].Proposition7.1.IfLisalatticeofregularlanguages,theneachevenlevelisalatticeofregularlanguagesandeachoddlevelisaBooleanalgebra.Further,ifLisclosedunderquotients,theneverylevelisclosedunderquotients.SincethepolynomialclosureofaC-varietyoflanguagesisapositiveC-varietyoflanguages[49,Theorem6.2],asimilarresultholdsforC-varieties.Proposition7.2.IfLisaC-varietyoflanguages,theneachevenlevelisapositiveC-varietyoflanguagesandeachoddlevelisaC-varietyoflanguages.Forinstance,theStraubing-Therien'hierarchyVn[74,67,69]isbuiltonthetrivialBooleanalgebraV0=f;;Ag.ThestartingpointofBrzozowski's\dot-depth"hierarchyBn[12]wasoriginallyde nedastheBooleanalgebraof niteandco nitelanguagesbutitwaslatersuggestedtostartwiththeBooleanalgebraB0(A)=fFAG[HjF,G,Hare nitelanguagesgThissuggestionwasmotivatedbyTheorem7.4below.Anotherseriesofconcatenationhierarchiesisobtainedasfollows.LetHbeavarietyofgroupsandletHbetheassociatedvarietyoflanguages.TheconcatenationhierarchybuiltonHisdenotedbyHnandthesehierarchiesarecalledgrouphierarchies.Itisnotimmediatetoseethatallthesehierarchiesdonotcollapse.Thiswas rstprovedbyBrzozowskiandKnast[14]forthedot-depthhierarchy,buttheresultalsoholdsfortheotherhierarchies[26].Theorem7.3.TheStraubing-Therien'hierarchy,thedot-depthhierarchyandthegrouphierarchiesarein nite.LetVnbethevarietyofmonoidscorrespondingtoVnandletBnbethevarietyofsemigroupscorrespondingtoBn.ThereisanicealgebraicconnectionbetweenVnandBn,discoveredbyStraubing[69].Givenavarietyof[ordered]monoidsVandavarietyofmonoids[semigroups]W,letVWbethevarietyof[ordered]monoidsgeneratedbythesemidirectproductsMNwithM2VandN2W.Theorem7.4.TheequalityBn=VnLIholdsforeachn�0.ThereisasimilarbridgebetweenVnandHnforeachvarietyofgroupsH[43,44].Theorem7.5.TheequalityHn=VnHholdsforeachn�0.Itisstillanoutstandingopenproblemtoknowwhetherthereisanalgorithmtocomputetheconcatenationlevelofagivenregularlanguage.Hereisabriefsummaryoftheknownresults.Letusstartwiththelevel1[26,39,41,56].LetGbethevarietyofallgroups.15 Theorem7.6.Thefollowingrelationshold:V1=Jx61K,B1=Jx!yx!6x!KandG1=Jx!61K.Inparticular,thesevarietiesaredecidable.ThelanguagesofG1arealsoknowntobetheopenregularsetsfortheprogrouptopology[26].ExtensionsofthisresulttothevarietiesH1whereHisavarietyofgroupsisthetopicofintensiveresearch.SeeinparticularSteinberg'article[64].The rstdecidabilityresultforthelevel2wasobtainedbySimon[62].Theorem7.7.AlanguagebelongstoV2ifandonlyifitssyntacticmonoidisJ-trivial.ThecorrespondingresultforB2isduetoKnast[24,25]Theorem7.8.AlanguagebelongstoB2ifandonlyifitssyntacticsemigroupsatis estheidentity(x!py!qx!)!x!py!sx!(x!ry!sx!)!=(x!py!qx!)!(x!ry!sx!)!:ThecorrespondingresultforG2hasalongstory,relatedindetailin[38],whereseveralothercharacterizationscanbefound.Theorem7.9.AlanguagebelongstoG2ifandonlyifinitssyntacticmonoid,thesubmonoidgeneratedbytheidempotentsisJ-trivial.Theorem7.9showsthatG2isdecidable.Again,thereisalotofongoingworktotrytoextendthisresulttovarietiesoftheformH2.Seeinparticular[7].Sincelevel3isthepolynomialclosureoflevel2,Theorem6.5canbeap-plied.Onegetsinparticularthefollowingdecidabilityresult[54].Recallthatthecontentofawordisthesetoflettersoccurringinthisword.Theorem7.10.AlanguagebelongstoV3ifandonlyifitssyntacticorderedmonoidsatis estheidentitiesx!yx!6x!forallpro nitewordsx;ywiththesamecontent.ThecorrespondingproblemforB3isstudiedin[20,22,56].Infact,Theorem7.4canbeusedtoprovethefollowingmoregeneraldecidabilityresult[56,69].Theorem7.11.Foreveryintegern,thevarietyBnisdecidableifandonlyifVnisdecidable.ItisstillanopenproblemtoknowwhetherasimilarreductionexistsforthehierarchyGn.Forthelevel4,severalpartialresultsareknown[48,70]andseveralconjec-tureshavebeenformulatedandthendisproved[54,64,55].Duetothelackofspace,wewillnotdetailtheseresultshere.Somepartialresultsarealsoknownforthelevel5[21].16 8HarmonywithlogicOneofthereasonswhythedecidabilityproblemisparticularlyappealingisitscloseconnectionwith nitemodeltheory, rstexploredbyBuchiintheearlysixties.Buchi'slogiccomprisesarelationsymboland,foreachlettera2A,aunarypredicatesymbola.ThesetFO[]of rstorderformulasisbuiltintheusualwaybyusingthesesymbols,theequalitysymbol, rstordervariables,Booleanconnectivesandquanti ers.Aworduisrepresentedasastructure(Dom(u);(a)a2A;)whereDom(u)=f1;:::;jujganda=fi2Dom(u)ju(i)=ag.Thebinaryrelationsymbolisinterpretedastheusualorder.Thus,ifu=abbaab,Dom(u)=f1;:::;6g,a=f1;4;5gandb=f2;4;6g.Formulascannowbeinterpretedonwords.Forinstance,thesentence'=9x9y(xy)^(ax)^(by)means\thereexisttwointegersxysuchthat,inu,theletterinpositionxisanaandtheletterinpositionyisab".Therefore,thesetofwordssatisfying'isAaAbA.Moregenerally,thelanguagede nedbyasentence'isthesetofwordsusuchthat'satis esu.Theconnectionwithstar-freelanguageswasestablishedbyMcNaughtonandPapert[27].Theorem8.1.AlanguageisFO[]-de nableifandonlyifitisstar-free.Thomas[77](seealso[31])re nedthisresultbyshowingthattheconcate-nationhierarchyofstar-freelanguagescorresponds,levelbylevel,tothen-hierarchy,de nedinductivelyasfollows:(1)0consistsofthequanti er-freeformulas.(2)nconsistsoftheformulasoftheform989'withnalternatingblocksofquanti ersand'quanti er-free.(3)BndenotestheclassofformulasthatareBooleancombinationsofn-formulas.Forinstance,9x19x28x38x48x59x6',where'isquanti erfree,isin3.ThenexttheoremisduetoThomas[77](seealso[31,40]).Theorem8.2.(1)Alanguageisn[]-de nableifandonlyifitbelongstoV2n1.(2)AlanguageisBn[]-de nableifandonlyifitbelongstoV2n.Aslightlyexpandedlogicisrequiredforthedot-depthhierarchy.Letmin[max]beapredicatesymbolinterpretedastheminimum[maximum]ofthedo-mainandletP[S]bearelationsymbolinterpretedasthepredecessor[successor]relation.LetLocbethesignaturefmin;max;S;Pg[f(a)a2Ag.Theorem8.3.(1)Alanguageisn[Loc]-de nableifandonlyifitbelongstoB2n1.(2)AlanguageisBn[Loc]-de nableifandonlyifitbelongstoB2n.Thusdecidingwhetheralanguagehaslevelnisequivalenttoaverynaturalproblemin nitemodeltheory.17 9Othervariations,recentadvancesSomespecializedtopicsrequireevenmoresophisticatedalgebraictools,likethekernelcategoryofamorphism.Thisisthecaseforinstanceforthebidetermin-isticproduct[9{11]orforthemarkedproductoftwolanguages[4].Anothertopicthatwedidnotmentionatall,butwhichishighlyinteresting,istheextensionoftheseresultstoin nitewordsoreventowordsoverordinalsorlinearorders.Iwouldliketoconcludewitharecentresult,whichopensanewresearchdirection.WehavegiveninSection6variousclosurepropertiesforvarietiesorevenforC-varieties.ThenextresultofBrancoandtheauthor[8]ismuchmoregeneral.Theorem9.1.IfLisalatticeoflanguagesclosedunderquotients,thenPol(L)isde nedbythesetofequationsoftheformx!yx!6x!,wherex;yarepro nitewordssuchthattheequationsx=x2andy6xaresatis edbyL.WorkisinprogresstoextendtheotherresultsofSection6tothismoregeneralsetting.Thedicultystemsfromthefactthatde nitionslikeV1Warenolongeravailableinthiscontextandonehastoworkdirectlyonpro niteidentities.References1.J.Almeida,Finitesemigroupsanduniversalalgebra,WorldScienti cPublishingCo.Inc.,RiverEdge,NJ,1994.Translatedfromthe1992Portugueseoriginalandrevisedbytheauthor.2.J.Almeida,Finitesemigroups:anintroductiontoauni edtheoryofpseudovari-eties,inSemigroups,Algorithms,AutomataandLanguages,G.M.S.Gomes,J.-E.PinandP.Silva(eds.),pp.3{64,WorldScienti c,Singapore,2002.3.J.Almeida,Pro nitesemigroupsandapplications,inStructuraltheoryofau-tomata,semigroups,anduniversalalgebra,pp.1{45,NATOSci.Ser.IIMath.Phys.Chem.vol.207,Lect.NotesComp.Sci.,Dordrecht,2005.4.J.Almeida,S.Margolis,B.SteinbergandM.Volkov,Representationthe-oryof nitesemigroups,semigroupradicalsandformallanguagetheory,Trans.Amer.Math.Soc.361,3(2009),1429{1461.5.M.Arfi,Polynomialoperationsonrationallanguages,inSTACS87(Passau,1987),pp.198{206,Lect.NotesComp.Sci.vol.247,Lect.NotesComp.Sci.,Berlin,1987.6.M.Arfi,Operationspolynomialesethierarchiesdeconcatenation,Theoret.Com-put.Sci.91,1(1991),71{84.7.K.AuingerandB.Steinberg,Varietiesof nitesupersolvablegroupswiththeM.Hallproperty,Math.Ann.335,4(2006),853{877.8.M.J.BrancoandJ.-E.Pin,Equationsforthepolynomialclosure,inICALP2009,PartII,S.Albers,A.Marchetti-Spaccamela,Y.Matias,S.NikoletseasandW.Thomas(eds.),Berlin,2009,pp.115{126,Lect.NotesComp.Sci.vol.5556,Springer.18 9.M.J.J.Branco,Thekernelcategoryandvariantsoftheconcatenationproduct,Internat.J.AlgebraComput.7,4(1997),487{509.10.M.J.J.Branco,Twoalgebraicapproachestovariantsoftheconcatenationproduct,Theoret.Comput.Sci.369,1-3(2006),406{426.11.M.J.J.Branco,Deterministicconcatenationproductoflanguagesrecognizedby niteidempotentmonoids,SemigroupForum74,3(2007),379{409.12.J.A.Brzozowski,Hierarchiesofaperiodiclanguages,RAIROInform.Theor.10,R{2(1976),33{49.13.J.A.BrzozowskiandF.E.Fich,LanguagesofR-trivialmonoids,J.Comput.SystemSci.20,1(1980),32{49.14.J.A.BrzozowskiandR.Knast,Thedot-depthhierarchyofstar-freelanguagesisin nite,J.Comput.SystemSci.16,1(1978),37{55.15.L.Chaubard,J.-E.PinandH.Straubing,Actions,WreathProductsofC-varietiesandConcatenationProduct,Theoret.Comput.Sci.356(2006),73{89.16.S.ChoandD.T.Huynh,Finite-automatonaperiodicityisPSPACE-complete,Theoret.Comput.Sci.88,1(1991),99{116.17.R.S.CohenandJ.A.Brzozowski,OnStar-FreeEvents,inProceedingsoftheHawaiiInternationalConferenceonSystemSciencesHonolulu,HI,January29-31,1968,B.K.KinariwalaandF.F.Kuo(eds.),pp.1{4,1968.18.S.Eilenberg,Automata,LanguagesandMachines,vol.B,AcademicPress,NewYork,1976.19.M.Gehrke,S.GrigorieffandJ.-E.Pin,Dualityandequationaltheoryofregularlanguages,inICALP2008,PartII,L.Acetoandal.(eds.),Berlin,2008,pp.246{257,Lect.NotesComp.Sci.vol.5126,Springer.20.C.GlaerandH.Schmitz,Languagesofdot-depth3=2,inSTACS2000(Lille),pp.555{566,LectureNotesinComput.Sci.vol.1770,Lect.NotesComp.Sci.,Berlin,2000.21.C.GlaerandH.Schmitz,Level5/2oftheStraubing-Therienhierarchyfortwo-letteralphabets,inDevelopmentsinlanguagetheory(Vienna,2001),pp.251{261,LectureNotesinComput.Sci.vol.2295,Lect.NotesComp.Sci.,Berlin,2002.22.C.GlaerandH.Schmitz,Languagesofdot-depth3=2,TheoryComput.Syst.42,2(2008),256{286.23.S.C.Kleene,Representationofeventsinnervenetsand niteautomata,inAutomatastudies,pp.3{41,PrincetonUniversityPress,Princeton,N.J.,1956.Annalsofmathematicsstudies,no.34.24.R.Knast,Asemigroupcharacterizationofdot-depthonelanguages,RAIROIn-form.Theor.17,4(1983),321{330.25.R.Knast,Sometheoremsongraphcongruences,RAIROInform.Theor.17,4(1983),331{342.26.S.MargolisandJ.-E.Pin,Productsofgrouplanguages,inFCT,Berlin,1985,pp.285{299,Lect.NotesComp.Sci.n199,Springer.27.R.McNaughtonandS.Papert,Counter-freeautomata,TheM.I.T.Press,Cam-bridge,Mass.-London,1971.WithanappendixbyWilliamHenneman,M.I.T.ResearchMonograph,No.65.28.A.R.Meyer,Anoteonstar-freeevents,J.Assoc.Comput.Mach.16(1969),220{225.29.P.Peladeau,Surleproduitaveccompteurmodulounnombrepremier,RAIROInform.Theor.Appl.26,6(1992),553{564.30.D.Perrin,Finiteautomata,inHandbookoftheoreticalcomputerscience,Vol.B,pp.1{57,Elsevier,Amsterdam,1990.19 31.D.PerrinandJ.-E.Pin,Firstorderlogicandstar-freesets,J.Comput.SystemSci.32(1986),393{406.32.J.-E.Pin,Proprietessyntactiquesduproduitnonambigu,in7thICALP,Berlin,1980,pp.483{499,Lect.NotesComp.Sci.n85,Springer.33.J.-E.Pin,Hierarchiesdeconcatenation,RAIROInformatiqueTheorique18(1984),23{46.34.J.-E.Pin,Finitegrouptopologyandp-adictopologyforfreemonoids,in12thICALP,Berlin,1985,pp.445{455,Lect.NotesComp.Sci.n194,Springer.35.J.-E.Pin,Varietiesofformallanguages,NorthOxford,LondonandPlenum,New-York,1986.(TraductiondeVarietesdelangagesformels).36.J.-E.Pin,ApropertyoftheSchutzenbergerproduct,SemigroupForum35(1987),53{62.37.J.-E.Pin,Topologiesforthefreemonoid,J.ofAlgebra137(1991),297{337.38.J.-E.Pin,PG=BG,asuccessstory,inNATOAdvancedStudyInstituteSemi-groups,FormalLanguagesandGroups,J.Fountain(ed.),pp.33{47,Kluweraca-demicpublishers,1995.39.J.-E.Pin,Avarietytheoremwithoutcomplementation,RussianMathematics(Iz.VUZ)39(1995),80{90.40.J.-E.Pin,Logic,SemigroupsandAutomataonWords,AnnalsofMathematicsandArti cialIntelligence16(1996),343{384.41.J.-E.Pin,PolynomialclosureofgrouplanguagesandopensetsoftheHalltopol-ogy,Theoret.Comput.Sci.169(1996),185{200.JournalversionofthearticleofICALP1994.42.J.-E.Pin,Syntacticsemigroups,inHandbookofformallanguages,G.RozenbergandA.Salomaa(eds.),vol.1,ch.10,pp.679{746,Springer,1997.43.J.-E.Pin,Bridgesforconcatenationhierarchies,in25thICALP,Berlin,1998,pp.431{442,Lect.NotesComp.Sci.n1443,Springer.44.J.-E.Pin,Algebraictoolsfortheconcatenationproduct,Theoret.Comput.Sci.292(2003),317{342.45.J.-E.Pin,Pro nitemethodsinautomatatheory,in26thInternationalSymposiumonTheoreticalAspectsofComputerScience(STACS2009),S.AlbersandJ.-Y.Marion(eds.),pp.31{50,InternationalesBegegnungs-undForschungszentrumfurInformatik(IBFI),SchlossDagstuhl,Germany,2009.46.J.-E.PinandJ.Sakarovitch,Someoperationsandtransductionsthatpreserverationality,in6thGIConference,Berlin,1983,pp.277{288,Lect.NotesComp.Sci.n145,Springer.47.J.-E.PinandJ.Sakarovitch,Uneapplicationdelarepresentationmatricielledestransductions,Theoret.Comput.Sci.35(1985),271{293.48.J.-E.PinandH.Straubing,Monoidsofuppertriangularbooleanmatrices,inSemigroups(Szeged,1981),Amsterdam,1985,pp.259{272,Colloq.Math.Soc.JanosBolyaivol.39,North-Holland.49.J.-E.PinandH.Straubing,SomeresultsonC-varieties,Theoret.InformaticsAppl.39(2005),239{262.50.J.-E.Pin,H.StraubingandD.Therien,Locallytrivialcategoriesandunam-biguousconcatenation,J.ofPureandAppliedAlgebra52(1988),297{311.51.J.-E.PinandP.Weil,Polynomialclosureandunambiguousproduct,in22thICALP,Berlin,1995,pp.348{359,Lect.NotesComp.Sci.n944,Springer.52.J.-E.PinandP.Weil,Pro nitesemigroups,Mal'cevproductsandidentities,J.ofAlgebra182(1996),604{626.53.J.-E.PinandP.Weil,AReitermantheoremforpseudovarietiesof nite rst-orderstructures,AlgebraUniversalis35(1996),577{595.20 54.J.-E.PinandP.Weil,Polynomialclosureandunambiguousproduct,TheoryComput.Systems30(1997),383{422.55.J.-E.PinandP.Weil,Aconjectureontheconcatenationproduct,Theoret.InformaticsAppl.35(2001),597{618.56.J.-E.PinandP.Weil,Thewreathproductprinciplefororderedsemigroups,CommunicationsinAlgebra30(2002),5677{5713.57.J.Reiterman,TheBirkho theoremfor nitealgebras,AlgebraUniversalis14,1(1982),1{10.58.C.Reutenauer,Surlesvarietesdelangagesetdemonodes,inTheoreticalcom-puterscience(FourthGIConf.,Aachen,1979),pp.260{265,LectureNotesinComput.Sci.vol.67,Lect.NotesComp.Sci.,Berlin,1979.59.J.Sakarovitch,Elementsofautomatatheory,CambridgeUniversityPress,Cam-bridge,2009.Translatedfromthe2003FrenchoriginalbyReubenThomas.60.M.-P.Schutzenberger,On nitemonoidshavingonlytrivialsubgroups,Infor-mationandControl8(1965),190{194.61.M.-P.Schutzenberger,Surleproduitdeconcatenationnonambigu,SemigroupForum18(1976),331{340.62.I.Simon,Piecewisetestableevents,inProc.2ndGIConf.,H.Brackage(ed.),pp.214{222,LectureNotesinComp.Sci.vol.33,SpringerVerlag,Berlin,Heidel-berg,NewYork,1975.63.I.Simon,Theproductofrationallanguages,inAutomata,languagesandpro-gramming(Lund,1993),pp.430{444,LectureNotesinComput.Sci.vol.700,Lect.NotesComp.Sci.,Berlin,1993.64.B.Steinberg,Polynomialclosureandtopology,Internat.J.AlgebraComput.10,5(2000),603{624.65.J.Stern,Characterizationsofsomeclassesofregularevents,Theoret.Comput.Sci.35,1(1985),17{42.66.H.Straubing,Familiesofrecognizablesetscorrespondingtocertainvarietiesof nitemonoids,J.PureAppl.Algebra15,3(1979),305{318.67.H.Straubing,AgeneralizationoftheSchutzenbergerproductof nitemonoids,Theoret.Comput.Sci.13,2(1981),137{150.68.H.Straubing,Relationalmorphismsandoperationsonrecognizablesets,RAIROInform.Theor.15,2(1981),149{159.69.H.Straubing,FinitesemigroupvarietiesoftheformVD,J.PureAppl.Algebra36,1(1985),53{94.70.H.Straubing,Semigroupsandlanguagesofdot-depthtwo,Theoret.Comput.Sci.58,1-3(1988),361{378.ThirteenthInternationalColloquiumonAutomata,LanguagesandProgramming(Rennes,1986).71.H.Straubing,Onlogicaldescriptionsofregularlanguages,inLATIN2002,Berlin,2002,pp.528{538,Lect.NotesComp.Sci.n2286,Springer.72.P.TessonandD.Therien,DiamondsAreForever:TheVarietyDA,inSemi-groups,Algorithms,AutomataandLanguages,Coimbra(Portugal)2001,pp.475{500,WorldScienti c,2002.73.D.Therien,LanguagesofNilpotentandSolvableGroups(ExtendedAbstract),in6thICALP,H.A.Maurer(ed.),pp.616{632,Lect.NotesComp.Sci.vol.71,Springer,1979.74.D.Therien,Classi cationof nitemonoids:thelanguageapproach,Theoret.Comput.Sci.14,2ang.(1981),195{208.75.D.Therien,Surlesmonodesdonttouslesgroupessontresolubles,SemigroupForum26,1-2(1983),89{101.21 76.D.Therien,AlanguagetheoreticinterpretationoftheSchutzenbergerrepresenta-tionswithapplicationstocertainvarietiesoflanguages,SemigroupForum28,1-3(1984),235{248.77.W.Thomas,Classifyingregulareventsinsymboliclogic,J.Comput.SystemSci.25,3(1982),360{376.78.P.Weil,AnextensionoftheSchutzenbergerproduct,inLattices,semigroups,anduniversalalgebra(Lisbon,1988),pp.315{321,Plenum,NewYork,1990.79.P.Weil,Productsoflanguageswithcounter,Theoret.Comput.Sci.76(1990),251{260.80.P.Weil,Closureofvarietiesoflanguagesunderproductswithcounter,J.Comput.SystemSci.45(1992),316{339.22