PPT-Groeps(bege)leider: Een eigen vakidentiteit…

Author : natator | Published Date : 2020-07-02

Sabine Vandoorne Afdelingshoofd Jeugdkliniek unit Kortverblijf Afdelingshoofd Volwassenenkliniek unit Jongvolwassenen Alle grote mensen zijn eerst kinderen geweest

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Groeps(bege)leider: Een eigen vakidentit..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Groeps(bege)leider: Een eigen vakidentiteit…: Transcript


Sabine Vandoorne Afdelingshoofd Jeugdkliniek unit Kortverblijf Afdelingshoofd Volwassenenkliniek unit Jongvolwassenen Alle grote mensen zijn eerst kinderen geweest maar alleen een héél enkele herinnert het zich. Calculus Functions of single variable Limit con tinuity and differentiability Mean value theorems Evaluation of definite and improper integrals Partial derivatives Total derivative Maxima and minima Gradient Divergence and Cu rl Vector identities D Calculus Mean value theorems Theorems of integral calculus Evaluation of definite and improper integrals Partial Derivatives Maxima and minima Multiple integrals Fourier series Vector identities Directional derivatives Line Surface and Volume integ Calculus Limit continuity and differentiability Partial Derivatives Maxima and minima Sequences and series Test for convergence Fourier series Vector Calculus Gradient Divergence and Curl Line surface and volume integrals Stokes Gauss and Greens t Calculus Limit continuity and differentiability Partial Derivatives Maxima and minima Sequences and series Test for convergence Fourier series Vector Calculus Gradient Divergence and Curl Line surface and volume integrals Stokes Gauss and Greens the Calculus Mean value theorems Theorems of integral calculus Evaluation of definite and improper integrals Partial Derivatives Maxima and mini ma Multiple integrals Fourier series Vector identities Directional derivatives Line Surface and Volume integ Calculus Mean value theorems Theorems of integral calculus Evaluation of definite and improper integrals Partial Derivatives Maxima and minima Multiple integrals Fourier series Vector identities Directional derivatives Line Surface and Volume integ Calculus Limit continuity and differentiability Partial derivatives Maxima and minima Sequences and series Test for convergence Fourier Series Differential Equations Linear and nonlinear first order ODEs higher order ODEs with constant coefficients Calculus Functions of single variable limit continuity and differentiability mean value theorems evaluation of definite and improper integrals partia l derivatives total derivative maxima and minima gradient divergence and curl vector identities dir a. nd by GNSS/. levelling. J. Klokočník. 1. , J. Kostelecký. 2,3. , B. Bucha. 4. , A. Bezděk. 1. , Ch. Foerste. 5. 1. Astronomical Institute, Academy of Sciences of the Czech Republic, . p.r.i. . (ASÚ),CZ – 251 65 . : . P. rincipal . C. omponent . A. nalysis (. PCA. ). Open/closed book examination data. >scores=. as.matrix. (. read.table. ("http://www1.maths.leeds.ac.uk/~charles/mva-data/openclosedbook.dat", head=T)). Results from detector operationsResults from detector operationsand outlookand outlookLNGS Gran SassoLNGS Gran SassoMAXPLANCKINSTITUTMAX-P-IERNPHYSIKERNPHYSIKBEGe in LAr test resultsBEGe in LAr test results during isotopic analysis Traditionally it was recodetector with a full width half-maximum FWHMHowever in many cases when using large detectors or when using a short amplifier time constant thi Toulouse. C. h. . Förste. 1. , S.L. Bruinsma. 2. , O. Abrikosov. 1. , J.-M. Lemoine. 2. , T. Schaller. 3. , H.-J. Götze. 3. , J. Ebbing. 3. , J.C. Marty. 2. , F. Flechtner. 1. , G. Balmino. 2. and R. Biancale. a. nd by GNSS/. levelling. J. Klokočník. 1. , J. Kostelecký. 2,3. , B. Bucha. 4. , A. Bezděk. 1. , Ch. Foerste. 5. 1. Astronomical Institute, Academy of Sciences of the Czech Republic, . p.r.i. . (ASÚ),CZ – 251 65 .

Download Document

Here is the link to download the presentation.
"Groeps(bege)leider: Een eigen vakidentiteit…"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents