/
Use of dynamic factor analysis to estimate trends in abunda Use of dynamic factor analysis to estimate trends in abunda

Use of dynamic factor analysis to estimate trends in abunda - PowerPoint Presentation

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
426 views
Uploaded On 2017-06-03

Use of dynamic factor analysis to estimate trends in abunda - PPT Presentation

Michael Scott Sherburne Cassidy D Peterson Robert J Latour Background Shark population declines 1970s 1990s Increased commercial and recreational fishery Kselected life history Shark Fishery Management Plan NMFS 1993 ID: 555505

pups yrs indices carlson yrs pups carlson indices nao sandbar noaa wikimedia trends abundance http data shark atlantic species

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Use of dynamic factor analysis to estima..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Use of dynamic factor analysis to estimate trends in abundance of upper trophic level species

Michael Scott Sherburne

Cassidy D PetersonRobert J LatourSlide2

Background

Shark population declines (1970s – 1990s)

Increased commercial and recreational fisheryK-selected life historyShark Fishery Management Plan (NMFS 1993)

Musick

et al. 1993

Baum et al. 2003Slide3

Motivation

Conservative managementShark stock assessments require catch-based indices of abundance

Problems:Species ranges are largeSharks are migratory with sex- and size-specific movements

Surveys are localized

flmnh.ufl.edu

SandbarSlide4

Motivation: Sandbar Stock Assessment

SEDAR 21 2011Slide5

Motivating QUESTIONs: Can we compile these conflicting indices of abundance into a representative trend of abundance over the sampled distribution?

Do broad-scale covariates affect these abundances?Slide6

Data Sources

VIMS LLSEAMAP trawl

SC LLGA LLSEFSC

LLGULFSPAN GNSlide7

1

Baremore

and Hale 2012

2

SEDAR

2011

3

Sminkey

and

Musick

1995

4

Carlson et al.

2006

5

Castro

1996

6

Branstetter

1987

7

Joung

et al.

2005

8 Castro 20119 Carlson and Baremore 200510 Kneebone et al. 200811 Drymon et al. 200612 Castro 199313 Driggers et al. 2004b14 Driggers et al. 2004a15 Carlson et al. 199916 Sulikowski et al. 200717 Frazier et al. 201418 Frazier et al. 201319 Manire et al. 199520 Carlson and Parsons 199721 Lombardi-Carlson et al. 200322 Castro 200923 Frazier et al. 201524 Carlson and Baremore 2003* Note that samples for this study were taken in waters off of Taiwan; study that estimated the reproductive cycle of spinner sharks within American waters. † Finetooth life history parameters estimated from fish within the Gulf of Mexico indicate slightly smaller, faster maturing fish (Carlson et al. 2003).

Female Life History Parameters

von

Bertalanffy

parameters

Species

A

50%

A

MAX

Repro. Cycle

Fecundity

L

K

LARGE COASTAL SHARKS

Sandbar

14 yrs

1

27 yrs

2

2.5 yrs

1

8 pups

1

165 cm PCL

3

0.086 / yr

3

Blacktip: Atl.

7

yrs

4

22

yrs

4

2

yrs

5

4

pups

5

159 cm

FL

4

0.16 /

yr

4

Blacktip: GOM

6

yrs

4

17

yrs

4

2

yrs

5

4

pups

5

142 cm

FL

4

0.24 /

yr

4

Spinner

7-8

yrs

6

20

yrs

6

2

yrs

7

*

6-8

pups

8

226 cm

FL

9

0.08 /

yr

9

Tiger

10 yrs

10

29 yrs

10

2 yrs

8

41 pups

8

347 cm FL

10

0.12 /

yr

10

SMALL COASTAL SHARKS

Finetooth

6.3

yrs

11†

18.2

yrs

11†

2

yrs

12

4 pups

10

131.3 cm

FL

11†

0.19 /

yr

11†

Blacknose

: Atl.

4.5

yrs

13

17-19yrs

13,16

2

yrs

13

5

pups

8

113.6 cm

FL

14

0.18 /

yr

14

Blacknose

: GOM

NA

16

yrs

15

1

yr

16

3

pups

16

113.7–124.1 cmFL

15

0.24–0.35

/

yr

15

Bonnethead

:

Atl.

6.7 yrs

17

19 yrs

17

1 yr

18

9 pups

18

103.6

cm FL

17

0.18 / yr

17

Bonnethead

:

GOM

3-4 yrs

19

12 yrs

20

1 yr

19

10

pups

21

122.6 cm TL

20

0.25 / yr

20

Atlantic

Sharpnose

3

yrs

22

23

yrs

23

1

yr

22

4-5

pups

22

94 cm

TL

24

0.73 /

yr

24

Slide8

1. Indices of abundance

Standardize CPUE for changes in catchability via

generalized linear models (GLMs)Zero inflationModels fit:Delta-lognormal

Hurdle Poisson / negative binomial

Zero-inflated Poisson /

negative binomial

Michael Scott SherburneSlide9

2. Dynamic Factor Analysis

Multivariate, dimension reduction technique specifically designed for short, non-stationary time series analysis

Model form:

&

MARSS package in R (Holmes et al. 2012)

 

R

elative

a

bundance (from each survey)

Common trends

(Factors)

Factor loadings

C

ovariates

Design matrix

Observation Error

Process

ErrorSlide10

2. Dynamic Factor Analysis

Things we can modify:

Number of common trends (m)Include covariatesCovariance structure of the observation error

&

 

 

 

 

 

 Slide11

Potential DFA Covariates:

North Atlantic Oscillation (NAO)

Atlantic Multidecadal

Oscillation (AMO)Annual Sea Surface Temperature (SST)

Species landings*

“NAO

timeseries

1856-present"

by

Rosentod

,

Marsupilami

http://

commons.wikimedia.org/wiki/File:Winter-NAO-Index.svg Licensed

under Public Domain via Wikimedia; "

AMO

timeseries

1856-present"

by

Rosentod

,

Marsupilami

http://www.cdc.noaa.gov/Correlation/amon.us.long.data

. Licensed

under Public Domain via Wikimedia

Data provided by

NOAA/OAR/Earth System Research Laboratory Physical Sciences Division,

Boulder, Colorado, USA, from their Web site

at

http://www.esrl.noaa.gov/psd/Slide12

Potential DFA Covariates:

North Atlantic Oscillation (NAO)

Atlantic

Multidecadal Oscillation (AMO)Annual Sea Surface Temperature (SST)

Species landings*

“NAO

timeseries

1856-present"

by

Rosentod

,

Marsupilami

http://

commons.wikimedia.org/wiki/File:Winter-NAO-Index.svg Licensed

under Public Domain via Wikimedia; "

AMO

timeseries

1856-present"

by

Rosentod

,

Marsupilami

http://www.cdc.noaa.gov/Correlation/amon.us.long.data

. Licensed

under Public Domain via Wikimedia

Data provided by

NOAA/OAR/Earth System Research Laboratory Physical Sciences Division,

Boulder, Colorado, USA, from their Web site

at

http://www.esrl.noaa.gov/psd/Slide13

Results:Sandbar shark

CJ

SweetmanSlide14

Sandbar Shark: Indices of AbundanceSlide15

Index Type

Covariance

StructureCommon TrendsCovariateDelta-Lognormal

diagonal and equal2None

Hurdle

diagonal and equal

1

None

Zero Inflated

diagonal and unequal

1

NoneSlide16
Slide17
Slide18

Sandbar Shark:Fitted trends

D-log

Hurdle

Zero-

infl

VIMS LL

0.14

0.26

0.53

GA

LL

0.54

0.91

0.97

SC

LL

0.07

0.43

0.76

SEAMAP Trawl

0.12

1.00

0.97

SEFSC LL

0.08

0.26

0.00

D-log

Hurdle

Zero-

infl

VIMS LL0.140.260.53GA LL0.540.910.97SC LL0.070.430.76SEAMAP Trawl0.12

1.00

0.97

SEFSC LL

0.08

0.26

0.00Slide19
Slide20

Conclusions

Choice of CPUE standardization method doesn’t change resulting common trend

Climatic indices don’t seem to significantly influence shark population trendsShark populations are recovering; management seems to be effectiveFollowing

Azevedo et al. (2008), could we use common trends as inputs in stock assessment in place of conflicting indices of abundance? Slide21

Acknowledgements

SEFSC LL: Trey

DriggersGULFSPAN GN: Dana BetheaGA Red Drum LL: Carolyn Belcher SC Red Drum LL: Erin Levesque; Bryan FrazierSEAMAP Trawl: Data for GA LL, SC LL, & SEAMAP Trawl from Southeast Area Monitoring and Assessment Program (SEAMAP.org)Slide22

Questions & Comments

cpeterson@vims.eduSlide23
Slide24