G Topics in Computer Graphics Lecture Geometric Model - PDF document

G Topics in Computer Graphics Lecture  Geometric Model
G Topics in Computer Graphics Lecture  Geometric Model

G Topics in Computer Graphics Lecture Geometric Model - Description


3033002 Topics in Computer Graphics Lecture 2 Geometric Modeling New York University Bezier Curves and Bsplines Blossoming Lecture 2 16 September 2002 Lecturer Prof Denis Zorin Scribe Kranthi K Gade In this l ID: 62339 Download Pdf

Tags

3033002 Topics Computer Graphics

Download Section

Please download the presentation from below link :


Download Pdf - The PPT/PDF document "G Topics in Computer Graphics Lecture G..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Embed / Share - G Topics in Computer Graphics Lecture Geometric Model


Presentation on theme: "G Topics in Computer Graphics Lecture Geometric Model"— Presentation transcript


G22.3033-002:TopicsinComputerGraphics:Lecture#2GeometricModelingNewYorkUniversity BezierCurvesandB-splines,BlossomingLecture#2:16September2002Lecturer:Prof.DenisZorinScribe:KranthiKGadeInthislecture,wediscusspolynomialparametriccurves,whichisthemostcommonlyused G22.3033-002:Lecture#2curvatureislikelytobediscontinuousunlessitiszero.Cubicsontheotherhandmayhavepointsofinßectionwithcurvaturechangingcontinuously.Torepresentarbitrarilycomplexcurvesoneusuallyusespiecewisepolynomials,stitchingtogethermanypolynomialpieces.Thenextquestionweneedtoaddressishowtospecifypolynomialcurves.ThemoststraightforwardapproachistodeÞneacurveusingthepolynomialcoefÞcients.Forexample,atwo-dimensionalcurvecanberepresentedusingpolynomialsinthefollowingway:Õsaretwo-dimensionalpoints.Onecanseethatistheweightedaverageofbutitisnotintuitivelyclearthoughhowistraversedaschanges,andhowinßuencetheshapeofBezierCurvesOnecanmakethecoefÞcientsdescribingapolynomialmoreintuitivebychangingthebasisfunctions.Insteadofusingthestandardmonomialbasisbasis,t,t,weusethethe(Št)3,3t(1Št)2,3t2(1Št),t3].Onewaytoderivethissetofbasisfunctionistolookattheexpansionof1=(1=(1Whythisbasis?WeshallseethatBeziercurveshaveanumberofniceproperties.BernsteinbasisisdeÞnedforany.For,thebasisisis(Št),t]andforitisis(Št)2,2t(1Št),t2].TheBernsteinbasisforareshowninFigure1.AnypolynomialcanbewrittenasacombinationofthefourpolynomialsoftheBernsteinbasis.Ifarefourpointsinspace,thenthecubicpolynomialcurveisthepolynomialiscalledacubicBeziercurvewithcontrolpointsPropertiesofcubicBeziercurvesInterpolation.Onecaneasilyseethat(0)=(1)=,i.e.theBeziercurveinterpolatesthepointsAfÞneInvariance.ThispropertycanbeeasilyveriÞedbyconsideringanafÞnemapisamatrixandisin.Now=(ThelasttransformationusesthefactthatBernsteinbasisfunctionssumuptoone(1). G22.3033-002:Lecture#2 113,0B3,1B3,2B3,3 Figure1:Bernsteinbasisfunctionsfor Figure2:BezierInterpolation3.TangenttothecurveatpointisthevectorandtangenttothecurveatThiscanbeeasilyveriÞedbydifferentiating(2)andsubstitutingappropriateparametervalues:.ThispropertycanbeusedtotestwhethertwoBeziercurvesarejoinedsmoothly:usethispropertytoÞndthetangentsatthecommonpointandthenseewhethertheyareparallel.ConvexHull.Itisclearthatthat,1].Thisand(1)meansthatallpointsontheBeziercurvelieinsidetheconvexhullofpointsPolarformsandblossomingPolarformofapolynomialofofdegreeisamultiafÞnesymmetricfunctionsuchthatt,t,...,t Wefocusonthecase.ThetwopropertiesofpolarformsaredeÞnedasfollows: G22.3033-002:Lecture#2 Figure3:BlossomingforBeziercurves.AfunctionifthevalueofthefunctionisthesameforanypermutationoftheargumentsAfunctionifforanyargumentsandany,...,at+(1)+(1Foranypolynomial,thereexistsauniquesymmetricandmultiafÞnepolarform.Wedonotgiveaformalproofforitbutanintuitionbehinditforthecasewillmakeitclear.BecausethepolarformismultiafÞneitislinearineachargument;thereforeitisapolynomial,oftotalpowerasitfollowsfrom(3).Thereforethepolarformcanbeexpressed.Writingequationsforsymmetryandtaking(3)intoaccountyieldsa 3(t1+t2+t32 isthepolarformofacubicpolynomial,thenthevalueofforanyarbitrarycanbefoundifthevaluesofgiven.ThisisdonebyrepeatedlinearinterpolationandisshowninFigure3.Inthiswaywecancomputethevalueofthepolynomialatanypointusingasequenceoflinearinterpolations.PolarformrepresentationisusefulbecauseitprovidesauniformandsimpleapproachtocomputingvaluesofapolynomialusingavarietyofrepresentationsfromBeziercurvestoNURBS(non-uniformrationalB-splines).B-splinesisadifferentapproachtorepresentingpiecewisepolynomialcurves,whichovercomessomeofthedrawbacksofBeziercurves.Supposewewishtodesignalongcurvewithmanyundulations.Oneapproachwouldbetouseahigh-degreeBeziercurve.Aswehavealreadydiscussed,thisisnotaverygoodapproach;alsonotethateachofcontrolpointsofaBeziercurveofdegreeinßuencesthewholecurve,whichmeansthatitisdifÞculttointroduceasmallfeaturewithoutchangingthecurveeverywhere.AnotherapproachusingBeziercurvesistoconstructthecurvefrommanyparts G22.3033-002:Lecture#2piecewiseBezier);inthiscaseweneedtomatchatleastthevaluesandtangentsattheendpointsofeachsegment.ValuesareeasilymatchedbyconstrainingthelastcontrolpointofsegmentandtheÞrstcontrolpointofsegmenttobethesame:.Tangentscanbemadethesameifthepointsofthesegmentsareconstrainedtobeonthesameline.Thisisthewaycurvesareconstructedinmanydrawingprograms,forexample,inAdobeIllustrator.Resultingcurvesneednotbehowever,anditisnotthateasytomakethemÒfairÓwhichtypicallymeansthatwewantthecurvaturenottochangeabruptly.Tosummarize,threecommonlydesirablepropertiesofcurvesare:Shouldbecontinuousatallpoints.Interpolation:Shouldinterpolatetheinputcontrolpoints.Localcontrol:ThemodiÞcationofaparticularcontrolpointshouldmodifythecurveonlylocally.Aswehaveseen,piecewiseBeziercurvesinterpolatethecontrolpointssharedbysegments,andhavelocalcontrol,butneednotbe-continuous.Itturnsoutthatthesethreepropertiesareincompatibleforcubiccurves:e.g.ifweattempttowriteasystemofequationsthatensuresthatsequentialBeziersegmentsarejoinedwithcontinuity,wewillseethatÒinteriorÓcontrolforsegmenthavetodependontheendpointsforall,i.e.thereisnolocalcontrol.IfwegiveuptheinterpolationpropertythereisatypeofpiecewisecubicpolynomialcurveswhichsatisÞestheremainingrequirementscalledtheB-splinecurves.Ifwerequireinterpola-tionbutgiveuplocalcontrolwegetcurvescallednaturalsplines,whichwewillnotdiscussinAB-splinecurvedeÞnedeverywhereoncanbewritteninthefollowingform:arecontrolpointsandarethebasisfunctionsassociatedwithcontrolpointsEachbasisfunctioncanbethoughtofasthevariableweightwhichdetermineshowthecontrolinßuencesthecurveatparametricvalue.Foruniformsplines,thebasisfunctionsforaÞxedfunctionWechoosethebasisfunctioninsuchawaythattheresultingcurvesaretheinßuenceofthecontrolpointsislocal(i.e.onthesmallestpossibleinterval)andthecurvesarepiecewisecubicpolynomialsoneacheachintervalali,i+1].Wewouldliketheinßuenceofacontrolpointtobemaximalatregionsofthecurveclosetoitandforthisinßuencetodecreaseaswemoveawayalongthecurveanddisappearcompletelyatsomedistance.AlsodesirableisafÞneinvariancepropertythatwehaveseenforBeziercurves.wedescribehowtoconstructbasisfunctionssatisfyingalltheserequirements.TherearemanydifferentwaystodeÞneB-splines;wewillconsidertwoequivalentdeÞni-tions:usingconvolutionandusingblossoming. G22.3033-002:Lecture#2B-splinebasisfunctionsWestartwiththesimplestfunctionswhichalreadymeetsomeoftherequirementsabove:piece-wiseconstantcoordinatefunctions.AnypiecewiseconstantfunctioncanbewrittenasBoxBoxistheboxfunctiondeÞnedasBoxWedeÞnetheconvolutionoftwofunctionsfgTheremarkablepropertyofconvolutionisthateachtimeweconvolveafunctionwithaboxitssmoothnessincreases.WewillseethatconvolutioncanbeseenasÒmovingaverageÓAB-splinebasisfunctionofdegreecanbeobtainedbyconvolvingaB-splinebasisfunc-tionofdegreewiththeboxBox.Forexample,thebasisfunctionofdegree1isdeÞnedastheconvolutionofBoxwithitself.WeneedtocomputeBoxBoxGraphically,thisconvolutioncanbeevaluatedbyslidingoneboxfunctionalongthecoor-dinateaxisfromandkeepingthesecondboxÞxed(seeFigure4).Thevalueoftheconvolutionforagivenpositionofthesecondboxissimplytheareaundertheproductoftheboxes,whichisjustthelengthoftheintervalwherebothboxesarenon-zero.AtÞrstthetwographsdonothavecommonarea.Oncethemovingboxreaches0,thereisagrowingoverlapbetweentheareasofthegraphs.Thevalueoftheconvolutionincreasesuntil.Thentheoverlapstartsdecreasing,andthevalueoftheconvolutiondecreasesdowntozeroat.ThefunctionBoxBoxisasshowninFigure4.NowtaketheconvolutionofBoxandweobtain,thedegree2basisfunction.Wecancontinuefurtherandobtaindegree3B-spline,byconvolvingBox(Figure5).PropertiesofB-splinesisapiecewisepolynomialofdegree(eachconvolutionincreasesthedegreebyhasasupportoflength.WehaveseenthatBoxhasasupport1andeachconvolutionincreasesthesupportby1. G22.3033-002:Lecture#2 Figure4:ThedeÞnitionofDegree1B-splinebasisfunctionthroughconvolutionofBoxfunc-tionwithitself. 124 6t32 3 2t2 1 2t32 3 2(4 +2(4 t)2 1 2(4 t)31 6(4 t)3 Figure5:Degree3B-splinebasisfunctionBoxcontinuousandeachconvolutionincreasessmoothnessby1.ThesetoffunctionsisafÞneinvariant.Thiscomesfromtheobservationthat G22.3033-002:Lecture#2 (0,1,2)P(1,2,3)P(2,3,4)P(1,2,t)P(2,3,t) (2,t,t)P(t,t,t)P(3,t,t)P(3,4,t)P(3,4,5) 3t 3t 3 2t 2t 3t Figure6:BlossominginB-splineswhichcanbeprovedbyininductionobservingthatthispropertyholdsfortheboxfunc-tionandispreservedbytheconvolution.BlossominginB-splinesForacubicB-spline,ifif,3],thenwecanobtainthevalueoft,t,tfromthevaluesofasshowninFigure6.Forri,i+1]andcubicB-splines,weneedfourcontrolpoints,i,i+1)i,i+2)+3)

Shom More....