From left to right input texture exemplar control map extracted from the exemplar a larger control map synthesized by our approach and the resulting new texture Abstract Many inhomogeneous realworld textures are nonstationary and exhibit various lar ID: 26751 Download Pdf
A qualitatively similar membrane c may be achieved via trans64257nite interpolation without solving a linear system f Seamless cloning obtained instantly using the meanvalue interpolant Abstract Seamless cloning of a source image patch into a target
Quality of match 2 Gaussian kernel 1 SE Dxx brPage 6br brPage 7br brPage 8br layer maps 2 Shape Synthesis s 3 Assignment problem 3 Assignment problem Thank you Thank you
Silva ATT Labs Abstract We advocate the use of point sets to represent shapes We pro vide a de64257nition of a smooth manifold surface from a set of points close to the original surface The de64257nition is based on local maps from differential geom
Yet it might be dif64257cult to de64257ne a succinct set of rules that capture the aesthetic preferences of the raters In this work we explore a datadriven approach to aesthetic enhancement of such shapes Speci64257cally we focus on the challenging
Left gradient 64257eld integration Middle membrane interpolation Right scattered data interpolation The insets show the shapes of the corresponding kernels Abstract We present a novel approach for rapid numerical approximation of convolutions with 6
Mitra Tel Aviv University University College London ETH Zurich Figure 1 Metarepresentations of two families of shapes where we show one selected probability distribution from each representation Here we see the distribution for the angle between the
Department of Materials Science and Engineering. Prof. Ilan Goldfarb. TAU: Facts and Figures. 1956. established. 30. ,000. students. 9. faculties. 100. departments. 1,032. academic faculty. 130. research centers.
Silva ATT Fr edo Durand MIT LCS Abstract Visibility algorithms for walkthrough and related applications have grown into a signi64257cant area spurred by the growth in the complexity of models and the need for highly interactive ways of navigating t
September 27 2012. The Tel-Aviv University team. Professor Erez Etzion. Dr. Yan Ben-. Hammou. Meny Ben-Moshe. Nir . G. uttman. Yiftah Silver. 15 years of detectors R&D for High energy physics . and the LHC.
Couched within Sperber and Wilsons 98 relevance theory the paper makes the claim that headlines are designed to optimize the relevance of their stories for their readers eadlines provide the readers with the optimal ratio between contextual e64256ec
Published bypamella-moone
From left to right input texture exemplar control map extracted from the exemplar a larger control map synthesized by our approach and the resulting new texture Abstract Many inhomogeneous realworld textures are nonstationary and exhibit various lar
Download Pdf - The PPT/PDF document "Layered Shape Synthesis Automatic Genera..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
ACM Reference Format Rosenberger, A., Cohen-Or, D., Lischinski, D. 2009. Layered Shape Synthesis: Automatic Generation of Control Maps for Non-Stationary Textures. ACM Trans. Graph. 28 , 5, Article 107 (December 2009), 9 pages. DOI = 10.1145/1618452.1618453 http://doi.acm.org/10.1145/1618452.1618453. Copyright Notice Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro Þ t or direct commercial advantage and that copies show this notice on the Þ rst page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior speci Þ c permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1 (212) 869-0481, or permissions@acm.org. © 2009 ACM 0730-0301/2009/05-ART107 $10.00 DOI 10.1145/1618452.1618453 http://doi.acm.org/10.1145/1618452.1618453 LayeredShapeSynthesis:AutomaticGenerationofControlMapsforNon-StationaryTextures AmirRosenberger TelAvivUniversity DanielCohen-Or TelAvivUniversity DaniLischinski TheHebrewUniversity Figure1: Aninhomogeneoustexture,exhibitinganon-uniformmixtureofpeelingpaint,baremetal,andrust.Fromlefttoright:inputtexture exemplar,controlmapextractedfromtheexemplar,alargercontrolmapsynthesizedbyourapproach,andtheresultingnewtexture. Abstract Manyinhomogeneousreal-worldtexturesarenon-stationaryand exhibitvariouslargescalepatternsthatareeasilyperceivedbya humanobserver.Suchtexturesviolatetheassumptionsunderly- ingmoststate-of-the-artexample-basedsynthesismethods.Con- sequently,theycannotbeproperlyreproducedbythesemethods, unlessasuitablecontrolmapisprovidedtoguidethesynthesis process.Suchcontrolmapsaretypicallyeitheruserspeciedor generatedbyasimulation.Inthispaper,wepresentanalternative: amethodforautomaticexample-basedgenerationofcontrolmaps, gearedatsynthesisofnatural,highlyinhomogeneoustextures,such asthoseresultingfromnaturalagingorweatheringprocesses.Our methodisbasedontheobservationthatanappropriatecontrolmap formanyofthesetexturesmaybemodeledasasuperpositionof severallayers,wherethevisiblepartsofeachlayerareoccupied byamorehomogeneoustexture.Thus,givenadecompositionof atextureexemplarintoasmallnumberofsuchlayers,weemploy anovelexample-basedshapesynthesisalgorithmtoautomatically generateanewsetoflayers.Ourshapesynthesisalgorithmisde- signedtopreservebothlocalandglobalcharacteristicsoftheexem- plar'slayermap.Thisprocessresultsinanewcontrolmap,which thenmaybeusedtoguidethesubsequenttexturesynthesisprocess. Keywords: controlmaps,example-basedtexturesynthesis,non- stationarytextures,shapesynthesis 1Introduction Computergeneratedimageryreliesheavilyontexturestoachieve realism.Oneeasywaytoacquirerealistictexturesisbyscanningor takingphotographsofsurfacesandmaterialsthatsurroundusinthe realworld.Therefore,alargenumberofmethodshavebeenpro- posedforsynthesizingtexturesfromexamples,inthelastdecade [Weietal.2009].Manyofthesemethodsareabletoproduceim- pressiveresultswhenappliedtohomogeneoustexturesthatmaybe describedbystationaryMarkovrandomeld(MRF)models.Yet manyrealworldtexturesarehighlyinhomogeneous,andarenot modeledwellbyastationarystochasticprocess. Consider,forexample,therustymetalsurfaceshownontheleftin Figure1.Thetextureonthissurfaceisclearlynon-stationary,andit maybeseenasahighlynon-uniformmixture,orsuperposition,of severaldifferenttextures:peelingpaint,baremetal,andrust.While eachofthesethreetexturesisroughlyhomogeneous,thetexture asawholeisnot.Thisisatypicalsituationformanyrealworld surfaces,whosetextureoftenresultsfromnaturalprocesses,suchas weathering,corrosion,colorcrackingandpeeling,growthofmoss, etc.[DorseyandHanrahan1996;Dorseyetal.1999;Boschetal. 2004;Desbenoitetal.2004;Dorseyetal.2008]. Acommonremedytocopewithsuchtexturesistoguidethesyn- thesisprocessbyacontrolmapthatencodesthelargescalevaria- tionsandthenon-localfeaturesofthedesiredoutputtexture(e.g., [Ashikhmin2001;Hertzmannetal.2001;Zhangetal.2003;Wang etal.2006;Weietal.2008]).However,suchcontrolmapsaretyp- icallyeitheruser-speciedorproducedbyacustomtailoredsimu- lation(e.g.,biologicalorphysically-based). Inthisworkweproposeanewmethodforautomaticallygenerat- ingcontrolmapsfromexamples,gearedatnaturaltexturessuchas theoneinFigure1.Asobservedabove,suchtexturesoftenlook likeasuperpositionofseverallayers,whereeachvisibleregionsof eachlayerareoccupiedbyamorehomogeneoustexture.Theshape ofthetexture-occupiedregionsineachlayerisfarfromarbitrary. Rather,itistheconsequenceofthespecicnaturalprocessthatpro- ducedthistexture,aswellastheshapeofthelayerunderneath.Nei- therglobalstatistics,norsmallneighborhoodsarecapableoffaith- fullycapturingsuchhigherlevelstructures.Suchappearancesmay begeneratedbyspecializedshadersorbyphysically-basedsimu- lations.However,wearenotawareofanygeneralfullyautomatic wayforgeneratingsuchashaderfromaspecicexample. Ourapproachbeginsbydecomposingtheinputexemplarintoa numberoflayers,whichweorderbottomtotop.Anovelexample- based shapesynthesis algorithmisthenusedtogenerateanewset oflayers,whoselocalandglobalcharacteristicsvisuallyresemblethoseoftheexemplar'slayers.Thisalgorithmmakesuseofabidi-rectionalmeasureofsimilaritybetweentheshapesofthelayers,whichisbasedontheshapes'boundaries.Startingfromsomeini-tialoutputshape,weiterativelyoptimizetheshapewithrespecttothissimilaritymeasure.Oncethenewlayersareavailable,atexturetransferprocessbasedontexture-by-numbers[Hertzmannetal.2001]isinvoked,resultinginthenaloutputtexture,suchastheresultshowninFigure1.Insummary,themainnoveltyinourapproachliesinexample-basedsynthesisofasuitablecontrolmap,ratherthanworkingdirectlyonthetexture,oronsomeassociatedappearancespace[LefebvreandHoppe2006].Toourknowledge,suchanapproachhasnotbeenexploredbefore.2RelatedWorkExample-basedtexturesynthesishasenjoyedconsiderableresearchattentioninrecentyears.Mostoftherelevantpreviousmeth-odsmayberoughlyclassiedtoparametricmethods[HeegerandBergen1995],andnon-parametricmethods,whichincludepixel-basedmethods[EfrosandLeung1999;WeiandLevoy2000],patch-basedmethods[EfrosandFreeman2001;Kwatraetal.2003],optimization-basedmethods[Kwatraetal.2005],andappearance-spacetexturesynthesis[LefebvreandHoppe2006].Parametricmethodsattempttoconstructaparametricmodelofthetexturebasedontheinputsample,whichhasproventobeachal-lengingtask,andaremostlysuccessfulwithstructurelessstation-arytextures.Non-parametricmethodshavedemonstratedtheabil-itytohandleawidervarietyoftextures,bygrowingthetextureonepixel/patchatatime.Optimization-basedmethodsevolvethetextureasawhole,furtherimprovingthequalityoftheresultsandmakingthesynthesismorecontrollable.Wereferthereaderto[Weietal.2009]foramorecomprehensiveoverviewofexample-basedtexturesynthesis.Whilenon-parametricmethodsaretypicallyabletoreproducesmallscalestructure,theyhaveadifcultycopingwithhighlyin-homogeneoustextures,sincesuchtexturescannotbemodeledbyastationaryMarkovRandomField(MRF)model,whichprovidesthetheoreticalbasisformostofthesemethods.Inordertohandlesuchtexturesandcontrollargescalestructure,Ashikhmin[2001]proposedtoguidethesynthesisprocessbyauser-providedtargetimage,whichspeciesthelocalaveragecolorsacrossthetargettexture.Texture-by-Numbers[Hertzmannetal.2001]extendsthisideafurtherbyaugmentingtheinputexemplarwithalabelmap,whereregionswithdistincttexturearedistinguishedbydifferentlabels.Asuitablelabelmapmaybepaintedmanuallybytheuser,orcreatedautomaticallyusingunsupervisedimagesegmentation.Tosynthesizeanewimage,atargetlabelmapisprovided,whichindicateshowthedifferenttexturesshouldbearrangedinthere-sultingimage.However,thatworkaddressedneithertheissueofautomaticallygeneratingalabelmapfornaturalinhomogeneoustextures,northeautomaticsynthesisofthetargetlabelmap,aswedoinourwork.Manyotherworkssincemadeuseofcontrolmapswhensynthesiz-ingnon-stationarytextures,forexample[Zhangetal.2003;Wangetal.2006;Guetal.2006;Luetal.2007;Weietal.2008].How-ever,inalloftheseworksthecontrolmapforthetargettextureiseitherprovidedbytheuser,orderivedfromaspecicmodeloftex-tureformationacrossa3Dsurface(e.g.,[Luetal.2007]),andwearenotawareofanypreviousattemptsofexample-basedcontrolmapgeneration.Ourshapesynthesisapproachisrelatedtotextureoptimizationtechniques[Wexleretal.2004;Kwatraetal.2005],whichsynthe-sizetexturesbyminimizingatextureenergyfunction.Thisfunc-tionconsistsofasumoflocaltermsmeasuringhowcloseeachsynthesizedtexturepatchistoanexemplarpatch.However,thisformulationdoesnotaccountforthepossibilitythattheremaybemanyotherpatchesintheexemplarthatarenotrepresentedatallinthesynthesizedresult.Whilethismaybeadequateforhomo-geneoustextures,wheremostpatchesaresimilartoeachother,thequalityoftheresultsforinhomogeneoustexturesisoftencompro-mised.Whileitispossibletoinjectsomeglobalstatisticsintotheoptimization[Kopfetal.2007],theresultingprocessstillfailstocapturethelargescaleappearanceofhighlyinhomogeneousnatu-raltexturesthatarethetargetofthiswork.Incontrast,weperformshapesynthesiswithabidirectionalsimilaritymeasure(inspiredbySimakovetal.[2008]andWeietal.[Weietal.2008]),anddemon-stratemorefaithfulreproductionofappearanceinthecomparisonswepresentinSection4.Appearance-spacetexturesynthesis[LefebvreandHoppe2006]isanotheroptimizationmethodthatoperatesinafeaturespace,ratherthanusingthevaluesofpixelsorsmallpatchesdirectly.Apointcorrespondingtoapixelinamoregeneralfeaturespacemayen-codemoreinformation,allowingstructuretobereproducedbetter.Thelayermapthatweassociatewiththeinputexemplarinourapproachcouldbeviewedasafeaturespacecustom-tailoredforsynthesisoflayeredinhomogeneoustextures.Avarietyofmethodsgeneratetexturesofweatheredsurfacesbyassumingandsimulatingaphysicalmodel[DorseyandHanrahan1996;Dorseyetal.1999;Merillouetal.2001;Boschetal.2004;Desbenoitetal.2004;Dorseyetal.2008].Whilesuchmethodshaveproducedsomehighlyrealisticresults,theyarenotgearedto-wardsmatchingaparticularappearancegivenbyanexample.Also,controllingtheresultsofthesynthesistypicallyinvolvesspecify-ingalargenumberofparameters,whicharenotalwaysintuitive.Incontrast,ourapproachisexample-based,ratherthanphysically-Ourapproachsynthesizestheboundariesofthelayershapesbyex-ample.Thus,itisrelatedtotheCurveAnalogiesworkofHertz-mannetal.[2002],whereasimilarframeworkwasappliedtoreproducethestyleofcurvedshapes.However,ourworkusesadifferentsimilaritymeasureandoperatesonadiscretepatch-basedrepresentationofashape'sboundary,ratherthanavector-basedrep-resentation.AlsorelatedistheworkofBahtetal.[2004],whichusesbinaryvoxelgridsinordertosynthesizegeometricdetailsonvolumesurfaces.Thesevoxelgridsaresimilartothebinaryneigh-borhoodsthatweusetooptimizetheshapeboundaries.However,theirgoalistoaddsmaller-scaledetailtoanexistingglobalshape,whilewefocusonsynthesizingtheentireshapefromscratch.3LayeredShapeSynthesisThisworkdealswithexample-basedgenerationofcontrolmapsrepresentedaslayermaps.Alayermapisanimagewherediffer-entpixelvaluesindicatetodifferentlayers.Let:::bethevaluesoflayermappixels,sortedinascendingorder.Then,alayerisdenedasthesetofallpixelswhosevalueisgreaterthanorequalto.Notethatapixelwithvalueactuallybelongstoalllayers;:::;.Onecanthinkofthelayersasstackedontopofeachother,withlayershigherinthestackpartiallyconceal-inglowerlayers.Eachlayerhasanassociatedforegroundshape,whichweencodeasabinaryimageofthesamedimensionsasthelayermap.Notethattheshapeisalwayscontainedin.AsmaybeseeninFigures1and6,theboundariesofthesenestedshapesarehighlycorrelated,butnotaligned.Intheguresinthispaper,wedisplayvaluescorrespondingtodifferentlayersusinguniquecolors. abcde abcde a 0.01.33.05.36.0 0.02.75.05.4 0.05.05.3 0.04.6 Figure2:Similaritymeasurebetweenpairsofvedifferentshapes.Givenasetofsuchshapes,ourgoalistosynthesizeanewsetofshapes,whilemaintainingbothglobalandlocalsimilaritytotheoriginalones.Forthispurpose,itisimportantthateachshapeoc-cupiesthesamerelativeamountofpixelsinthesynthesizedmapasitdidintheexemplar,andthattheboundariesofthesynthe-sizedshapeslocallyresemblethoseintheexemplar.Wefoundthatrepresentingtheshapebymeansofitsboundarycurvefailstocap-turealloftherelevantinformation.Sucharepresentationcannotpredictthespatialrelationshipbetweendisconnectedcomponentsoftheshape,anddoesnotpreventself-intersections.Instead,werepresentabinaryshapebyacollectionofpatchescenteredontheshape'sboundarypixels(atmultipleresolutions)inordertocap-turesthenecessaryshapeproperties.Ourshapesynthesisapproachemploysoptimizationsimilarlyto[Wexleretal.2004;Kwatraetal.2005],wherethesynthesizedre-sultisiterativelyoptimizedwithrespecttosomemeasureofitssim-ilaritywiththeexemplar.Webeginbyderivingasuitablebidirec-tionalshapesimilaritymeasure,similarlytoSimakovetal.[2008]andWeietal.[2008].Next,wedescribeanovelgreedyoptimiza-tionschemethatiterativelymodiesaninitialshape,soastoin-creaseitssimilaritytoagivenexemplarshape.Finally,wedis-cusshowthismechanismisusedtocreateanentirenewlayermap,whichisasequenceofnestedshapes,fromthelayermapproducedinthelayerdecompositionphasedescribedintheprevioussection.3.1Shapesimilaritymeasurebethesetsofboundarypixelsofshapes,respectfully.Aboundarypixelisapixelinsideashapewithatleastoneofits4-neighborsoutsidetheshape.Letbetwoboundarypixels,andletbetheneighborhoodscenteredaroundthemandrotatedby.Werefertosuchneighborhoodsaspatches.Wedenethesimilarity,,betweentwoboundarypixelsasthedistancebetweentheirneighborhoods(rotatedsuchthatthedistanceisminimized).Formally,)=Sincewedealwithbinaryimages,thenormaboveissimplythenumberofdifferentpixelsbetweentwopatches.Next,wede-nethelocalsimilaritybetweenaboundarypixelandtheboundaryof(another)shapeasthesimilaritybetweenandthepixelmostsimilartoitontheboundary)=Notethatthissimilaritymeasureisnotsymmetric.Whileitensuresthateveryboundarypatchofissimilartoaboundarypatchin Figure3:Iterativeassignmentofboundarypatches.Theexemplarboundarypatches(left)areassignedtothesynthesizedboundarypatches(right).Incaseswheretwopatchesareassignedtothesameone,theassignmentwiththelargerLdifference(redarrow)isdiscardedandwillbeassignedtoanotherpatchinafutureiter-ation(yellowarrow).theremaybeboundarypatchesinthatarenotwellrepresentedin.Forexample,asimpleshapemaybedeemedsimilartoamorecomplexonethatalsohappenstocontainsomesimplefeatures.Thus,werequireabidirectionalsimilaritymeasure,denedas)=)+ B2j;(3)whichistheaveragenumberofdifferentpixelsbetweenabound-arypatchofoneshapetoitsnearestneighborontheother.Figure2showsseveraldifferentshapesandreportstheirpairwisebidirec-tionalsimilarities.3.2ShapeoptimizationArmedwiththesimilaritymeasureabove,weuseanoptimizationprocedurethatiterativelymodiestheboundaryofasynthesizedtomakeitmoresimilartothatoftheexemplarshapeTheoptimizationproceedsfromcoarsetoneresolution.Ateachresolutionwealternatebetweentwomainsteps:(i)matchingeachboundarypatchoftoaboundarypatchof,and(ii)modifyingbyaddingorremovingpixelsbasedontheresultsofthematchingachievedinthepreviousstep.Thisiterativeoptimizationproce-dureresemblesthatofKwatraetal.[2005],buteachofthetwomainstepsdifferssignicantlyfromitscounterpart,becauseweminimizeadifferent(bidirectional)energyfunction,andworkwithbinaryimages,ratherthantextures.Thesetwostepsarediscussedinmoredetailbelow.Boundarypatchmatching.Aspointedoutearlier,wewouldlikeeveryboundarypatchoftoresembleoneof,butwewouldalsolikeeveryboundarypatchoftoberepresentedin.Thus,assumingwehaveanequalnumberofboundarypatchesin,weseekaminimumcostassignment,afundamentalcombinato-rialoptimizationproblem[Schrijver2003].Solvingthisproblemexactlyistooexpensiveforourpurposes(,whereisthenumberofpatches),soweresorttoanapproximatesolutionusingtheiterativegreedyapproachdescribedbelow.denotethesetsofboundarypatchesofrespectively,andassumefornowthatthetwosetshavethesamesize.Eachpatchinisinitiallyassignedtoitsnearestneighbor.Asaresult,somepatchesinmayhavemorethanoneexemplarpatchassignedtothem,whileothersmayhavenone(seeFigure3).Intheformercase,wekeeponlytheassignmentwiththesmallestdifference,anddiscardtherest.Allofthepairsof Figure5:Reningshapeboundarieswithourmulti-resolutionoptimization.Twoinitialshapes(left)areevolvedusingtwodifferentexem-plars(right). Figure4:Left:Shapeadjustment.Boundaryexemplarpatchesaresuperimposedovertheirassignedpositions.Pixelsinregionsofoverlapbetweenthesesuperimposedpatchesmaybeaddedtotheshape(greendot),orremovedfromit(reddot),makingthenewboundarymoresimilartothatoftheexemplar.Right:Matchingpatchesfromthepreviousshape(gold)aresuperimposedagaintoseedthenewshape(blue).patcheswhichhavebeenassignedarethenremovedfromfurtherconsideration,andtheprocessisrepeateduntileverypatchinhasbeenassigned.Ingeneral,differinsize.Typically,thesynthesizedshapeislargerthantheexemplar.Thus,assumingthat,weconstructasetofexemplarpatchesofsizebyincludingeachexemplarpatchtimes,andrandomlyselect-additionalpatchesfrom.Inthiswayweensurethatalltheboundaryfeaturesintheexemplarshapegetanequalchancetoberepresentedinthesynthesizedshape.Shapeadjustment.Afterndingtheassignmentasdescribedabove,ourgoalistomodifytheboundaryofsoastoincreasethesimilarityto(byreducing).Toachievethis,wesu-perimposeeachexemplarpatchoveritscounterpartin.Considerapixel,whichiscoveredbyseveraloverlappingsuper-imposedpatchesfrom.Informally,ifthesepatchesagreethatshouldbepartoftheshape,itisaddedto.Similarly,apixelinsidemightberemovediftheoverlappingpatchesagreethatitshouldnotbelongtotheshape.ThisisillustratedinFigure4(left).Morespecically,considerapixelinthevicinityofthebound-aryof.Itiscoveredbytwogroupsofoverlappingsuperimposedexemplarpatches:onegrouppredictsthatbelongstotheshape,whiletheotheronepredictsthatisoutsidetheshape.Foreachofthesetwopredictionswecomputeascorebysumminguptheweightsofthecorrespondinggroup'spatchesat.Letbeaboundarypixeloftheexemplarpixelassignedtoit.Thentheentireexemplarpatchisassignedthefollowingweight whichisfurthermultipliedbyaGaussianfallofffunction(thustheweightdecreasesawayfromthecenterofthepatch).Thesigmavalueforthisfunctionwaschosentobehalfofthepatchessize.Thegroupwiththehighestscoreatdetermineswhetherbeincludedorexcludedfromtheshape.Whenthesumofweightsaccumulatedateachpixelisbelowathreshold,itsvalueremainsunchanged.Thisisbecausepatchweightsreectadegreeofcertainty,soareasoflowweightaremoresensitivetorandomnessgeneratedbyourapproximatednear-estneighborsearchandthegreedyassignment,suchthatusingthenewvaluesmayproducenoise.Thisthresholdalsodeterminesthenalamountofpixelsintheshapeaftertheiterationisdone.There-fore,itissetdynamicallysothatthe(relative)amountofthepixelsinsidetheshapeisthesameasintheexemplar.Candidatesfromtheintervalal102;107]aretestedandtheonewhichresultsinthenearestamountischosen.Aftertheupdateiscomplete,theopti-mizationprocedureisrepeateduntilconvergence.Convergenceisreachedwhenthenumberofchangedpixelsfallsbelowathreshold.Asmentionedearlier,theoptimizationproceedsfromcoarsetoneresolution.Theresultcomputedateachresolutionlevelisupsam-pledtoserveasastartingpointforthenext(ner)level.Atcoarserresolutionstheglobalstructuresareformed,whileneresolutionsllinthenedetailsalongtheshape'sboundary.Inourexam-ples,weuse5to6resolutionlevels.Figure5showshowdifferentinitializationsleadtodifferentglobalshapes.However,inalloftheexamplesthesynthesizedshapecontainsboundaryfeaturesthat Figure6:Ourinhomogeneoustexturesynthesisapproach.areverysimilartothosepresentintheexemplar,resultingincloseoverallresemblance.3.3LayermapsynthesisTheshapeoptimizationprocedurepresentedintheprevioussec-tionmaybeuseddirectlytosynthesizetherst(bottom)layer.Arandomlygeneratedshape,withthenumberofforegroundpixelsmatchingthatofthecorrespondingexemplarlayermaybeusedforinitialization.Inordertogeneratethefollowinglayers,however,wemustintroduceanumberofmodications.First,theshapeofeachlayerisnestedinsidetheshapeofthelayerbeneathit.Sec-ond,theboundariesoftwosuccessivelayersaretypicallyhighlycorrelated.Preservingthiscorrelationisimportant,asitisinstru-mentalforfaithfullyreproducingtheappearanceoftheexemplarinthesynthesizedresult.Itisnotobvioushowtoinitializetheshapeofthenextlayersundertheseconditions.Toaddresstheserequirementswebeginthesynthesisofeachlayerbycreatingamaskthatdenesthearea(containedinsidetheshapeofthepreviouslayer),wherethecurrentshapeisallowedtoevolve.Initially,thismaskissettotheentireshape,butweusethemostrecentboundarypatchassignments(fromthelastshapeoptimizationiteration)toshrinkthismaskdowntoabetterinitialguessfortheregioncontaining.Morespecically,weagainsuperimposeboundarypatchesfromtheexemplarovertheirassignedlocationsontheboundaryof,butthistimewetrytopre-dictwhichofthepixelsinsideshouldbelongtothemaskofasillustratedinFigure4(right).Thus,theinteriorofisseededwithpixelswhicharepredictedtobelongtowithasufcientlylargeweight.Themaskisthenshrunktoincludeonlytheseseededpixels.Seededpixelswithhighweightsformtheinitialguessfor,whilethosewithsomewhatsmallerweightsdenetheremain-ingregionofthemask,withinwhichtheshapeisallowedtoevolveinthecourseoftheoptimization.Theinitializationofeachnewlayerisdoneviathisseedingmech-anisminthecoarsestresolution,whereboundarypatchesarelargeenoughtofullycovertheinteriorofthepreviousshape.Asimilarstepisrepeatedatthebeginningofeachresolutionleveltorecreateanaccuratemaskforthecurrentlevelatthenewresolution,andtorenetheshapeboundary.Afterthisstep,shapeoptimizationproceedsasdescribedbefore.Continuouscontrolmaps.Inourexperimentswefoundthatthesubsequenttexturesynthesisprocesscansometimesbeimprovedbyswitchingfromadiscretelayermaptoacontinuouscontrolmap.Specically,foreachpixelinsidetheshapeitscontinuousmapvalueissetto )+arethedistancesfromrespectively(seeFigure7).Thedistancesareobtainedbyperform-ingdistancetransformsover.DistancetransformswerealsousedtocreatecontrolmapsbyLefebvreandHoppe[2006]. Figure7:Thedistancesfromapointinsideashapetotheneigh-boringshapesareusedtoconvertadiscretelabelmap(left)toacontinuousone(right).4ApplicationsandResultsWefoundthelayeredshapesynthesisapproachdescribedintheprevioustexturetobeeffectiveforsynthesisofinhomogeneoustex-tures,suchasthoseresultingfromnaturalagingorweatheringpro-cesses.ThesynthesisprocessforsuchtexturesconsistsofthreesuccessivephasesdepictedinFigure6:layerdecomposition,shapesynthesis,andtexturesynthesis.Thelayerdecompositionphasetakesaninhomogeneoustexturesampleasinput,andgeneratesalayermapwhichencodesthedis-tincthomogeneoustextureregions(layers)presentintheinput,byassigningauniquelabeltoallofthepixelsbelongingtothesamelayer.FollowingthetextureclassicationapproachadvocatedbyVarmaandZisserman[2003],werstsegmenttheexemplar'spix-elsbyperformingK-Meansclusteringonthedimensionalfea-turevectorsformedbyconcatenatingthevaluesofeachpixel'sneighborhood.Wecurrentlyrelyontheusertospecifyasthenumberofdistincttexturesvisibleintheexemplar,typicallybetween3and5.issetto15inallofourexamples.There-sultingclustersshouldroughlycorrespondtothedistincttexturespresentintheexemplar.Pointsclosertotheclustercentersareduetopixelsthatarethemoretypicalrepresentativesofthecorrespond-ingtextures,whilepointsfarawayfromthecentercomefromareasoftransitionbetweentextures.Let;:::;betheresultingclusters,orderedbytheusersuchthatisthebottomlayer(orig-inalcleansurface),andisthetoplayer(mostweatheredsurface).Forthelayermap,wesettheforegroundpixelsofofCi+1[:::.Iftheclustershavebeenorderedproperly,the;:::;expressesapossiblenaturalevolutionandspreadovertimeoftheweatheringphenomenoncapturedbytheexemplar.Inthelastphaseweusethenewlayermapobtainedintheshapesynthesisphase(Section3)tosynthesizeanewinhomogeneoustexture.Thisisdonebyapplyingthetexture-by-numbersframe-work[Hertzmannetal.2001].Whileapplyingtexture-by-numbersdirectlyonthelayermapoftenproducessatisfactoryresults,theirvisualqualitymaybefurtherimprovedbyswitchingfromadiscretelayermaptoacontinuousone,asdescribedintheprevioussection.Thecontinuousmapmaybeseenasaheuristicanalogueforthe Figure8:Avarietyofresultsproducedbyourmethod.Left:inputexemplarsandtheirdecompositionstolayers;Middle:synthesizedlayermap;Right:nalsynthesizedresult. Figure9:Terraingenerationbyheightmapsynthesisusingourmethod.Left:inputheightmapanditsdecompositiontolayers;Middle:thesynthesizedlayermap;Right:nalsynthesizedresult. inputourresult[Kopfetal.2007][Kwatraetal.2005]Figure10:Acomparisonofourapproachtotextureoptimizationwithandwithouthistogrammatching.Inthetoprowbothmethodsperformsynthesisdirectlyfromtheexemplar.Inthebottomtworows,weattempttousetextureoptimizationtosynthesizeanewlayermap.weatheringdegreemapof[Wangetal.2006].Weexperimentedwithourmethodonavarietyofnaturalinhomo-geneoustextures.SomeresultsareshowninFigures1,6,and8.Theexamplesarequitevaried,showcasingphenomenasuchascor-rosion,rust,lichen,andpeelingpaint.Theydiffersignicantlynotonlyintheirappearance,butalsointheirunderlyinglayerstructure,asmaybeseenfromthelayermapsextractedbyourmethod.Ourmethodsuccessfullyreproducesthegloballayerstructures,thelo-calnedetailsoftheshapeboundaries,andthenalappearanceofthesetextures.Ourmethodisnotlimitedtosuchtextures,however.Otherinhomogeneoustexturesthatexhibitsalayeredstructurewithnestedshapesmaybesynthesizedaswell.Forexample,wehavesynthesizedaplausiblectionalsatelliteimagefromoneofEarth(bottomrowinFigure8).Sinceweusepatch-basedshapesynthe-sis,somerepetitionsdooccur,buttheyaremostlydifculttospot,astheyareexplicitlylimitedinourapproachbyourfairboundarysamplingandassignmentmechanisms.Anotherapplicationofourapproachisexample-basedterrainsyn-thesis,asdemonstratedinFigure9.Heightmapsusedtorepre-sentterrainsmayalsobeconsideredasnon-stationarytexturesfor Figure11:Inpainting.Left:original,right:ourresult. Figure12:Exampleofusercontrolviaapaintinginterface.whichourlayeredshapesynthesisapproachtsperfectly.Forthegenerationofthelayermap,asimplequantizationoftheheightmapisused.Theboundariesoflayersresemblecontourlinesinatopographicmap.Inthisapplication,whichissimilartotexturesynthesisdescribedbefore,theshapesynthesisphasegeneratesanewtopographiclayoutforthesynthesizedterrainandthetexturesynthesisphaseaddsthenedetails.Thecomputationtimeofourmethodisdominatedbythetexturebynumbersphase,whichtakesuptovehoursfora800imageusing55neighborhoods.Thetimeittakestosynthesizeanewlayermapdependsonthetotallengthoftheshapeboundaries.Thecomplexityoftheoptimizationstepislinearinthenumberofnearestneighborcallsforeachboundarypatch.Weuseapproxi-matenearestneighborsearchvialocallysensitivehashing[DatarandIndyk2004].Ittakesourunoptimizedcode2030secondsonaveragetocompleteoneoptimizationiterationforan800600im-age.Typically,510iterationsareusedateachresolutionlevel,sotheexecutiontimeperlayerisupto30minutes.Wecompareourmethodtotwopreviousexample-basedtexturesynthesismethods:textureoptimization[Kwatraetal.2005]andtextureoptimizationwithcolorhistogrammatching[Kopfetal.2007].Figure10showstheresultsofthethreemethodsside-by-side.Thetoprowshowsthenalsynthesisresultonatextureofarustingsurface.Kwatra'smethodissuitedforstationarytextures,andexhibitsmultipleobviousrepetitionsmakingtheresultquitedissimilarfromtheexemplar.Kopf'sresultmatchestheglobalcolorstatisticsoftheexemplar,andproducesabetterresult,butsomerepetitionsarestillapparent,andsomeregionsofthesynthe-sizedtexturedonothaveasimilarcounterpartintheexemplar(suchasthelargeregionoflighterrustnearthecenter).Itisalsointer-estingtoexaminewhetherthesepreviousmethodsareabletosyn-thesizethelayermap,ratherthansynthesizingthetexturedirectly,andthisisdoneontwoexamplesshowninthetwobottomrowsofFigure10.Themiddlerowisalayermapextractedfromacloudyskytexture,whileinthebottomrowthelayermapisfromtheter-raininFigure9.Inbothoftheseexamples,thepreviousmethodsgeneratemorerepetitionsofentireregionsofthelayermap,andinseveralplacestherearedirecttransitionsbetweennon-adjacentlayers,whicharenotpresentintheinputmap.Figure11showsaninpaintingexample,whereaholeislledinsideaninhomogeneoustexture.Whiletheresultisobviouslynotiden-ticaltotheoriginalimage,itisquiteplausible,andthelledregionblendswellwiththeoriginalparts.Thelayermapinsidetheholeisinitializedrandomly.Sinceourmethodmodiestheentirelayermap,aftereachoptimizationstepweresetthelayermapoutsidethe Figure13:Examplesoffailurecases.Top:violationofthelayermodel.Bottom:failuretoreproducespecicshapes.holebacktotheoriginalone.Figure12demonstratesthefeasibilityofcontrollingtheresultofthesynthesisviaapaintinginterface.TheexemplaranditslayermapareshowninthethirdrowofFigure8.Theusersketchesinyellowtheapproximatepositionwhererustshouldbe,andtheresultingsketchservesastheinitializationfortheshapesynthesisphase.Thinstripsofblueandgreenpixelsareautomaticallyaddedbythesystem,sincetheyellowlayershapeissupposedtobenestedinsidetheblueandthegreenlayershapes.Inordertoavoidchang-ingtheusersketchedshapetoomuch,fewerresolutionlevelsareusedbytheshapesynthesismethod,resultinginthemiddleimageinFigure12,whiletherightmostimageisthesynthesizedtexture.Ourapproachmakestwobasicassumptions:(1)thecontrolmapconsistsofanorderedsetlayers,nestedwithineachother;(2)theproposedshapesimilaritymeasurecapturesalltheshapecharacteristicsthatoneaimstoreproduce.Violationofeitheroftheseassumptionsmayleadtoafailure,asdiscussedbelow.(1)Thersttypeoffailureisdemonstratedbythesyntheticexam-pleinthetoprowofFigure13.Herewegreenandblueregionsthatareindependentofeachotherintheinput(e.g.,anaturaltexturewhoseappearanceresultsfromtwoindependentprocesses).Ourapproachassumesalayeredmodelandgeneratesthegreenlayerrst,followedbythebluelayer.Asaresult,therelationsbetweenthegreenandblueregionsarenotpreserved,andseveralbluere-gionsaresynthesizedinsidegreenones.(2)Theproposedsimilaritymeasurecharacterizesshapesbythelo-calappearanceoftheirboundaries,withoutconsideringtheshapeasawhole.Thus,itisbettersuitedforne-scaleunstructuredshapesandfractal-likeboundaries.Morestructuredelementsmightbebetterhandledbyothermodels.Forexample,thelocationsofthedesertsinthebottomrowofFigure8mighthavebeenrepro-ducedbetterusingthecontext-awaretexturesframework[Luetal.2007].ThebottomrowofFigure13showsanothersyntheticexam-plewheretheeasilyrecognizabledistinctshapesintheinputmapappearmixedinthemapgeneratedbyourmethod.5ConclusionWehavepresentedanovelexample-basedmethodforsynthesisofcontrolmapssuitablefornonstationarytextures,suchasthosere-sultingfromweathering.Tothatend,wehavedevelopedanew powerfulexample-basedshapesynthesisalgorithmthatrepresentsshapesasacollectionofboundarypatchesatmultipleresolution,andsynthesizesanewshapefromanexamplebyoptimizingabidi-rectionalsimilarityfunction.Applicationsofourmethodincludesynthesisofnaturaltexturesandterraingeneration.Infutureworkwehopetoextendthemethodofshapesynthesistoalargersetoftextures,forexample,texturesthatdonotexhibitaclearhierarchyoflayers,andtextureswithlargerstructures.Ourcurrentmeasureemphasizesboundarysimilarityoverotherprop-erties,suchasareatoboundarylengthratio,whichismaintainedonlyimplicitly.Wewouldliketogainabetterunderstandingoftherelationsbetweensuchproperties,andexperimentwithvariousextensionsofoursimilaritymeasure.Wewouldalsoliketodiscoveradditionalapplicationsofourshapesynthesisapproach.Inparticular,itwouldbeinterestingtoexploretheapplicabilityofsuchanapproachtothesynthesisof3Dshapes.Acknowledgments:ThisworkwassupportedinpartbygrantsfromtheIsraelMinistryofScience,andfromtheIsraelScienceFoundationfoundedbytheIsraelAcademyofSciencesandHu-manities.Theauthorswouldalsoliketothanktheanonymousre-viewerswhosesuggestionsweregreatlyhelpful.ReferencesSHIKHMIN,M.2001.Synthesizingnaturaltextures.InProc.Symp.Interactive3DGraphics,217226.HAT,P.,INGRAM,S.,ANDURK,G.2004.Geometrictexturesynthesisbyexample.InSGP'04:Proceedingsofthe2004Eu-rographics/ACMSIGGRAPHsymposiumonGeometryprocess-,ACM,NewYork,NY,USA,4144.OSCH,C.,PUEYO,X.,MERILLOU,S.,ANDHAZANFARPOUR,D.2004.Aphysically-basedmodelforrenderingrealis-ticscratches.ComputerGraphicsForum23,3(Sept.),361370.ATAR,M.,ANDNDYK,P.2004.Locality-sensitivehashingschemebasedonp-stabledistributions.InProc.SCG'04,ACMPress,253262.ESBENOIT,B.,GALIN,E.,ANDKKOUCHE,S.2004.Simu-latingandmodelinglichengrowth.ComputerGraphicsForum,3(Sept.),341350.ORSEY,J.,ANDANRAHAN,P.1996.Modelingandrenderingofmetallicpatinas.InProc.SIGGRAPH'96,AddisonWesley,ORSEY,J.,EDELMAN,A.,JENSEN,H.W.,LEGAKIS,J.,ANDEDERSEN,H.K.1999.Modelingandrenderingofweatheredstone.InProc.SIGGRAPH'99,ACMPress,225234.ORSEY,J.,RUSHMEIER,H.,ANDILLION,F.2008.ModelingofMaterialAppearance.ComputerGraphics.MorganKaufmann/Elsevier,Dec..336pages.FROS,A.A.,ANDREEMAN,W.T.2001.Imagequiltingfortexturesynthesisandtransfer.Proc.SIGGRAPH2001,341346.FROS,A.A.,ANDEUNG,T.K.1999.Texturesynthesisbynon-parametricsampling.Proc.ICCV'992,10331038.,J.,T,C.-I.,RAMAMOORTHI,R.,BELHUMEUR,P.,MTUSIK,W.,ANDAYAR,S.2006.Time-varyingsurfaceap-pearance:acquisition,modelingandrendering.ACMTransac-tionsonGraphics25,3(Proc.SIGGRAPH2006),762771.EEGER,D.J.,ANDERGEN,J.R.1995.Pyramid-basedtextureProc.SIGGRAPH'95,229238.ERTZMANN,A.,JACOBS,C.E.,OLIVER,N.,CURLESS,B.,ANDALESIN,D.H.2001.Imageanalogies.Proc.SIGGRAPH,327340.ERTZMANN,A.,OLIVER,N.,CURLESS,B.,ANDEITZ,S.M.2002.Curveanalogies.InProc.13thEurographicsWorkshoponRendering,EurographicsAssociation,233246.OPF,J.,F,C.-W.,COHEN-O,D.,DEUSSEN,O.,LISCHINSKI,D.,ANDONG,T.-T.2007.Solidtexturesynthesisfrom2dexemplars.ACMTransactionsonGraphics26,3(Proc.SIG-GRAPH2007),2.WATRA,V.,SCHODL,A.,ESSA,I.,TURK,G.,ANDOBICKA.2003.Graphcuttextures:imageandvideosynthesisusinggraphcuts.ACMTransactionsonGraphics22,3(Proc.SIG-GRAPH2003),277286.WATRA,V.,ESSA,I.,BOBICK,A.,ANDWATRA,N.2005.Textureoptimizationforexample-basedsynthesis.ACMTrans-actionsonGraphics24,3(Proc.SIGGRAPH2005),795802.EFEBVRE,S.,ANDOPPE,H.2006.Appearance-spacetex-turesynthesis.ACMTransactionsonGraphics25,3(Proc.SIG-GRAPH2006),541548.,J.,GEORGHIADES,A.S.,GLASER,A.,W,H.,WEIL.-Y.,GUO,B.,DORSEY,J.,ANDUSHMEIER,H.2007.Context-awaretextures.ACMTrans.Graph.26,1,3.ERILLOU,S.,DISCHLER,J.-M.,ANDHAZANFARPOUR,D.2001.Corrosion:simulatingandrendering.InProc.GraphicsInterface2001,CanadianInformationProcessingSociety,167CHRIJVER,A.2003.CombinatorialOptimization:PolyhedraandEfciency,vol.A.Springer-Verlag,BerlinHeidelberg.IMAKOV,D.,CASPI,Y.,SHECHTMAN,E.,ANDRANI,M.2008.Summarizingvisualdatausingbidirectionalsimilarity.Proc.CVPR2008,IEEEComputerSociety.ARMA,M.,ANDISSERMAN,A.2003.Textureclassication:Arelterbanksnecessary.InProc.CVPR2003,IEEE,691698.ANG,J.,TONG,X.,LIN,S.,PAN,M.,WANG,C.,BAO,H.,UO,B.,ANDHUM,H.-Y.2006.Appearancemanifoldsformodelingtime-variantappearanceofmaterials.ACMTransac-tionsonGraphics25,3(Proc.SIGGRAPH2006),754761.EI,L.-Y.,ANDEVOY,M.2000.Fasttexturesynthesisus-ingtree-structuredvectorquantization.Proc.SIGGRAPH2000EI,L.-Y.,HAN,J.,ZHOU,K.,BAO,H.,GUO,B.,ANDHUMH.-Y.2008.Inversetexturesynthesis.ACMTrans.Graph.273,19.EI,L.-Y.,LEFEBVRE,S.,KWATRA,V.,ANDURK,G.,2009.Stateoftheartinexample-basedtexturesynthesis.Eurographics2009StateofTheArtReport,April.EXLER,Y.,SHECHTMAN,E.,ANDRANI,M.2004.Space-timevideocompletion.InProc.CVPR2004,vol.1,120127.HANG,J.,ZHOU,K.,VELHO,L.,GUO,B.,ANDHUM,H.-Y.2003.Synthesisofprogressively-varianttexturesonarbi-trarysurfaces.ACMTransactionsonGraphics22,3(Proc.SIG-GRAPH2003),295302.
© 2021 docslides.com Inc.
All rights reserved.