/
Map Building with Mobile Robots in Populated Environments Dirk H ahnel Dirk Schulz Wolfram Map Building with Mobile Robots in Populated Environments Dirk H ahnel Dirk Schulz Wolfram

Map Building with Mobile Robots in Populated Environments Dirk H ahnel Dirk Schulz Wolfram - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
542 views
Uploaded On 2014-12-12

Map Building with Mobile Robots in Populated Environments Dirk H ahnel Dirk Schulz Wolfram - PPT Presentation

How ever most of the approaches assume that the environment is static during the dataacquisition phase In this paper we consider the problem of creating maps with mobile robots in populated environments Our approach uses a probabilistic method to tr ID: 22389

How ever most

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Map Building with Mobile Robots in Popul..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

thereareKpersonsandletXt=fxt1;:::;xtKgbethestatesofthesepersonsattimet.Notethateachxtiisarandomvariablerangingoverthestatespaceofasingleperson.Furthermore,letZ(t)=fz1(t);:::;zmt(t)gde-noteafeaturesetobservedattimet,wherezj(t)isonefeatureofsuchaset.Ztisthesequenceofallfeaturesetsuptotimet.Thekeyquestionwhentrackingmulti-plepersonsishowtoassigntheobservedfeaturestotheindividualobjects.IntheJPDAFframework,ajointassociationeventisasetofpairs(j;i)2f0;:::;mtgf1;:::;Kg.Eachuniquelydetermineswhichfeatureisassignedtowhichobject.Pleasenote,thatintheJPDAFframework,thefeaturez0(t)isusedtomodelsituationsinwhichanob-jecthasnotbeendetected,i.e.nofeaturehasbeenfoundforobjecti.Letjidenotethesetofallvalidjointasso-ciationeventswhichassignfeaturejtotheobjecti.Attimet,theJPDAFconsiderstheposteriorprobabilitythatfeaturejiscausedbyobjecti: ji=X2jiP(jZt):(1)Accordingto[11],wecancomputethe jias ji=X2ji (mt�jj)Y(j;i)2p(zj(t)jxti):(2)Itremainstodescribe,howthebeliefsp(xti)aboutthestatesoftheindividualobjectsarerepresentedandup-dated.Inourapproach[11],weusesample-basedrepre-sentationsoftheindividualbeliefs.Thekeyideaunderly-ingallparticleltersistorepresentthedensityp(xtijZt)byasetStiofNweighted,randomsamplesorparticlessti;n(n=1:::N).Asamplesetconstitutesadiscreteapproximationofaprobabilitydistribution.Eachsampleisatuple(xti;n;wti;n)consistingofstatexti;nandanim-portancefactorwti;n.Thepredictionstepisrealizedbydrawingsamplesfromthesetcomputedinthepreviousiterationandbyupdatingtheirstateaccordingtothepre-dictionmodelp(xtijxt�1i;t).Inthecorrectionstep,afeaturesetZ(t)isintegratedintothesamplesobtainedinthepredictionstep.Therebyweconsidertheassign-mentprobabilities ji.Inthesample-basedvariant,thesequantitiesareobtainedbyintegratingoverallsamples:p(zj(t)jxti)=1 NNXn=1p(zj(t)jxti;n):(3)Giventheassignmentprobabilitieswenowcancomputetheweightsofthesampleswti;n= mtXj=0 jip(zj(t)jxti;n);(4)where isanormalizerensuringthattheweightssumuptooneoverallsamples.Finally,weobtainNnewsam-plesfromthecurrentsamplesbybootstrapresampling. Figure1:Typicallaserrangenderscan.Twoofthelocalminimaarecausedbypeoplewalkingbytherobot(leftimage).Featuresextractedfromthescan,thegrey-levelrepresentstheprobabilitythataperson'slegsareattheposition(center).Occlusiongrid,thegrey-levelrepresentstheprobabilitythatthepositionisoccluded(rightimage). Figure2:Fromlefttoright,top-down:theoccupancymapforthecurrentscan,theoccupancymapforthepre-viousscan,theresultingdifferencemap,andthefusionofthedifferencemapwiththefeaturemapsforthescandepictedinFigure1Forthispurposeweselecteverysamplexti;nwithproba-bilitywti;n.InoursystemweapplytheSJPDAFtoestimatethetra-jectoriesofpersonsinrangescans.Sincethelaserrangescannersmountedonourplatformsareataheightofapprox.40cm,thebeamsarereectedbythelegsofthepeoplewhichtypicallyappearaslocalminimainthescans.TheselocalminimaareusedasthefeaturesoftheSJPDAF.SeeleftandmiddlepartofFigure1.Unfor-tunately,thereareotherobjectswhichproducepatternssimilartopeople.Todistinguishthesestaticobjectsfrommovingpeopleoursystemadditionallyconsidersthedif-ferencesbetweenoccupancyprobabilitygridsbuiltfromconsecutivescans.Staticfeaturesarelteredout.ThisisillustratedinFigure2.Finally,wehavetodealwithpossibleocclusions.Wethereforecomputeaso-called“occlusionmap”contain-ingforeachpositioninthevicinityoftherobottheprob-abilitythatthecorrespondingpositionisnotvisiblegiventhecurrentrangescan.SeerightpartofFigure1.3ComputingConsistentMapsOurcurrentsystemisabletolearn2dand3dmapsus-ingrangescansrecordedwithamobilerobot.Inbothcases,theapproachisincremental.Mathematically,wecalculateasequenceofposes^l1;^l2;:::andcorrespond-ingmapsbymaximizingthemarginallikelihoodofthe t-thposeandmaprelativetothe(t�1)-thposeandmap:^lt=argmaxltfp(stjlt;^m(^lt�1;st�1))p(ltjut�1;^lt�1)g(5)Inthisequationthetermp(stjlt;^m(^lt�1;st�1))istheprobabilityofthemostrecentmeasurementstgiventheposeltandthemap^m(^lt�1;st�1)constructedsofar.Thetermp(ltjut�1;^lt�1)representstheprobabilitythattherobotisatlocationltgiventherobotwaspreviouslyatposition^lt�1andhascarriedout(ormeasured)themo-tionut�1.Theresultingpose^ltisthenusedtogenerateanewmap^mviathestandardincrementalmap-updatingfunctionpresentedin[9]:^m(^lt;st)=argmaxmp(mj^lt;st)(6)Onedisadvantageoftheapproachdescribedaboveliesinthefact,thatthecomplexityofasinglemaximizationstepisinO(t),sinceeverymeasurementiscomparedwithallpreviousmeasurements.Inoursystem,wethereforeuseamap^m(^lt�1;t;st�1;t)=^m(^lt�1;:::;^lt�t;st�1;:::;st�t)(7)thatisconstructedbasedofthetmostrecentmea-surementsonly.Thisismotivatedbytwoobservations.First,proximitysensorshaveonlyalimitedrangesothatthesystemgenerallycannotcoverthewholeenvironmentwithasinglescan.Additionally,objectsintheenviron-mentleadtoocclusionssothatmanyaspectsofagivenareaareinvisiblefromotherpositions.Therefore,mea-surementsobtainedatdistantplacesoftenprovidenoin-formationtomaximize(5).Theoverallapproachcanbesummarizedasfollows:Atanypointt�1intimetherobotisgivenanestimateofitspose^lt�1andamap^m(^lt�1;t;st�1;t).Aftertherobotmovedfurtheronandaftertakinganewmeasure-mentst,therobotdeterminesthemostlikelynewpose^lt.Itdoesthisbytradingofftheconsistencyofthemeasure-mentwiththemap(rsttermontheright-handsidein(5))andtheconsistencyofthenewposewiththecontrolactionandthepreviouspose(secondtermontheright-handsidein(5)).Themapisthenextendedbythenewmeasurementst,usingthepose^ltastheposeatwhichthismeasurementwastaken.ItremainstodescribehowweactuallymaximizeEqua-tion(5).Oursystemappliestwodifferentapproachesde-pendingonwhethertheunderlyingscansare2dor3dscans.3.1Two-dimensionalScanAlignmentOuralgorithmto2dscanmatchingisanextensionoftheapproachpresentedin[14].Toalignascanrelativetothe Figure3:Two-dimensionalscanalignment.Mapcreatedoutofthetmostrecentscans(leftimage),measurementstobtainedattimet(centerimage)andresultingalign-ment(rightimage).tmostrecentscans,werstconstructalocalgridmap^m(^lt�1;t;st�1;t)outofthetmostrecentscans.Ad-ditionallyto[14]weintegrateoversmallGaussianerrorsintherobotposewhencomputingthemaps.Thisavoidsthatmanycellsremainunknownespeciallyiftissmall,increasesthesmoothnessofthelikelihoodfunctiontobeoptimizedandthusresultsinbetteralignments.TheleftimageofFigure3showsatypicalmapconstructedoutof100scans.Thedarkeralocation,themorelikelyitisthatthecorrespondingplaceintheenvironmentiscoveredbyanobstacle.Pleasenotethatthemapappearsslightlyblurredaccordingtotheintegrationoversmallposeer-rors.Tomaximizethelikelihoodofascanwithrespecttothismap,weapplyahillclimbingstrategy.Atypi-calscanisshowninthecenterofFigure3.TheoptimalalignmentofthisscanwithrespecttothemapisshownintherightimageofFigure3.Ascanbeseenfromthegure,thealignmentisquiteaccurate.3.2AligningThree-dimensionalRangeScansUnfortunately,athree-dimensionalvariantofthemapsusedforthe2dscanalignmentwouldconsumetoomuchmemoryinthecaseofthreedimensions.Thereforethisapproachisnotapplicableto3dscanalignment.Instead,werepresentthe3dmapsastrianglemeshesconstructedfromtheindividualscans.Wecreateatriangleforthreeneighboringscanpoints,ifthemaximumlengthofanedgedoesnotexceedacertainthresholdwhichdependsonthelengthofthebeams.Tocomputethemostlikelypositionofanew3dscanwithrespecttothecurrent3dmodel,weapplyanap-proximativephysicalmodeloftherangescanningpro-cess.Obviously,anidealsensorwouldalwaysmeasurethecorrectdistancetotheclosestobstacleinthesensingdirection.However,sensorsandmodelsgeneratedoutofrangescannersarenoisy.Therefore,oursystemsin-corporatesmeasurementnoiseandrandomnoisetodealwitherrorstypicallyfoundin3drangescans.First,wegenerallyhavenormallydistributedmeasurementerrorsaroundthedistance“expected”accordingtothecurrentpositionofthescannerandthegivenmodeloftheenvi-ronment.Additionally,weobserverandomlydistributedmeasurementsbecauseoferrorsinthemodelandbecauseofdeviationsintheanglesbetweencorrespondingbeams Figure9:Three-dimensionalmapofabuilding(left)andpeopleltered(right).niedviewofthecorrespondingportionofthemap.Ifweintegratetheinformationobtainedfromthepeopletracker,however,thesespuriousobjectsarecompletelyremoved(seerightimageofFigure9).Thenumberoftrianglesinthesemodelsare416.800withoutlteringand412.500withltering.Pleasenote,thatthisexper-imentalsoillustratestheadvantageofusingatrackingsystemoverapurefeature-basedapproach.Duetothedisplacementofthescanners,peoplearenotalwaysvisi-bleinbothscanners.Accordingly,apurelyfeature-basedapproachlike[15]willaddobjectstothe3dmodelwhen-evertheyarenotdetectedbytherstscanner.Oursys-tem,however,canpredictpositionsofpersonsinthecaseofocclusionsandthuscanlteroutthecorrespondingreadingsevenifthefeaturesaremissing.6ConclusionsInthispaperwepresentedaprobabilisticapproachtomappinginpopulatedenvironments.Thekeyideaofthistechniqueistouseajointprobabilisticdataassociationltertotrackpeopleinthedataobtainedwiththesensorsoftherobot.Theresultsofthepeopletrackingareinte-gratedintothescanalignmentprocessandintothemapgenerationprocess.Thisleadstotwodifferentimprove-ments.First,theresultingposeestimatesarebetterandsecond,theresultingmapscontainlessspuriousobjectsthanthemapscreatedwithoutlteringpeople.Ourtechniquehasbeenimplementedandtestedondiffer-entroboticplatformsandforgenerating2dand3dmaps.Theexperimentsdemonstratethatourapproachcanse-riouslyreducethenumberofbeamscorruptedbypeoplewalkingthroughtheenvironment.Additionally,exten-sivesimulationexperimentsillustratethattheposeesti-matesaresignicantlybetteriftheresultsofthetrackingsystemareincorporatedduringtheposeestimation.AcknowledgementsThisworkhaspartlybeensupportedbytheECundercontractnumberIST-2000-29456.References[1]P.BeslandN.McKay.Amethodforregistrationof3dshapes.Trans.Patt.Anal.Mach.Intell.14(2),pages239–256,1992.[2]J.A.Castellanos,J.M.M.Montiel,J.Neira,andJ.D.Tard´os.TheSPmap:Aprobabilisticframeworkforsimultaneouslocalizationandmapbuilding.IEEETransactionsonRoboticsandAutomation,15(5):948–953,1999.[3]I.J.Cox.Areviewofstatisticaldataassociationtechniquesformotioncorrespondence.InternationalJournalofComputerVision,10(1):53–66,1993.[4]G.Dissanayake,H.Durrant-Whyte,andT.Bailey.Acomputa-tionallyefcientsolutiontothesimultaneouslocalizationandmapbuilding(SLAM)problem.InICRA'2000WorkshoponMobileRobotNavigationandMapping,2000.[5]M.A.GreenspanandG.Godin.AnearestneighbormethodforefcientICP.InProc.ofthe3rdInt.Conf.on3-DDigitalImagingandModeling(3DIM01),2001.[6]J.-S.GutmannandK.Konolige.Incrementalmappingoflargecyclicenvironments.InProc.oftheIEEEInt.Symp.onComputa-tionalIntelligenceinRoboticsandAutomation(CIRA),1999.[7]J.J.LeonardandH.J.S.Feder.Acomputationallyefcientmethodforlarge-scaleconcurrentmappingandlocalization.InProc.oftheNinthInt.Symp.onRoboticsResearch(ISRR),1999.[8]F.LuandE.Milios.Globallyconsistentrangescanalignmentforenvironmentmapping.AutonomousRobots,4:333–349,1997.[9]H.P.Moravec.Sensorfusionincertaintygridsformobilerobots.AIMagazine,pages61–74,Summer1988.[10]H.Samet.ApplicationsofSpatialDataStructures.Addison-WesleyPublishingCompany,1990.[11]D.Schulz,W.Burgard,D.Fox,andA.B.Cremers.Trackingmulti-plemovingobjectswithamobilerobot.InProc.oftheIEEECom-puterSocietyConferenceonComputerVisionandPatternRecog-nition(CVPR),2001.[12]H.Shatkay.LearningModelsforRobotNavigation.PhDthesis,ComputerScienceDepartment,BrownUniversity,Providence,RI,1998.[13]S.Thrun.Aprobabilisticonlinemappingalgorithmforteamsofmobilerobots.InternationalJournalofRoboticsResearch,20(5):335–363,2001.[14]S.Thrun,W.Burgard,andD.Fox.Areal-timealgorithmformo-bilerobotmappingwithapplicationstomulti-robotand3Dmap-ping.InProc.oftheIEEEInternationalConferenceonRobotics&Automation(ICRA),2000.[15]C.-C.WangandC.Thorpe.Simultaneouslocalizationandmap-pingwithdetectionandtrackingofmovingobjects.InProc.oftheIEEEInternationalConferenceonRobotics&Automation(ICRA),2002.