PDF-Theorem2.ThereisanecientO(logn) HKapproximationalgorithmforthek-Tour

Author : pamella-moone | Published Date : 2015-11-04

FinallyifnoneoftheabovehappensthesetsBx31andBy32arecompletelydisjointSoifthethirdconditionholdsthetwotoursT1T2arecompletelydisjointcoveringtogetherk0distinctverticesWecanconnectthemtoea

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Theorem2.ThereisanecientO(logn) HKappr..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Theorem2.ThereisanecientO(logn) HKapproximationalgorithmforthek-Tour: Transcript


FinallyifnoneoftheabovehappensthesetsBx31andBy32arecompletelydisjointSoifthethirdconditionholdsthetwotoursT1T2arecompletelydisjointcoveringtogetherk0distinctverticesWecanconnectthemtoea. CS-130AWBLT1' &$ % Linkedbinarytrees.InsertandDeleteMin(orDeleteMax)takesO(logn)time.CanMeld(Merge)twoleftisttreesinO(logn)time. CS-130AWBLT2' &$ % ExtendedBinaryTrees (Addexternalnodes) CS-130AWBL Example :AsubsetHofagroupGisasubgroup()Hisnonemptyand,wheneverx;y2H;thenxy12H:Theorem2 :AnonemptysubsetHofa nitegroupGisasubgroup()Hisclosed.2 Theorem2 :AnonemptysubsetHofa nitegroupGisasubgroup()His p logn)asinthebestknownapproximationalgorithmforVertexCoverbyKarakostas[11].ThepreviouslybestknownapproximationratioforMinUnCutisO(logn)[9],andthebestpreviouslyknownap-proximationforMin2CNFDeletionisO 6n:Moreprecisely,nXj=1(j)=2 12n2+O(nlogn)asn!1:Themaximalorderof(n)issomewhatlarger,andwasdeterminedbyGronwallin1913,seeHardyandWright[7,Theorem323,Sect.18.3and22.9].Theorem2.2(Gronwall)Theasymptot Group GeneratingSet Size Where Sn,n2 (ij)'s n(n1) 2 Theorem2.1 (12);(13);:::;(1n) n1 Theorem2.2 (12);(23);:::;(n1n) n1 Theorem2.3 (12);(12:::n)ifn3 2 Theorem2.5 (12);(23:::n)ifn3 2 Corollary2.6 Inlecture19,wesawanLPrelaxationbasedalgorithmtosolvethesparsestcutproblemwithanapproximationguaranteeofO(logn).Inthislecture,wewillshowthattheintegralitygapoftheLPrelaxationisO(logn)andhencethisistheb Fromthescalinglaw,weobservethefollowingscalinglimitsonthepermissiblesparsityintermsofthedimensionalityofthesearchspace:kontheorderof1=)kvk0.n=p logn(6)kontheorderofn=)kvk0.p n=p logn(7)Thatis,asearchs log(1="))fractionofallconstraintsif1"fractionofallconstraintsissatis able.RecentlyTrevisan[17]developedanalgorithmthatsatis es1O(3p "logn)fractionofallconstraints(thiscanbeimprovedto1O(p "logn)[9]) kn3=2)factor;thisisonlyap kfactorlooserthanthatof[25].Oursecondapplicationisacollectionofvarioushierarchicalidentity-basedencryp-tion(HIBE)schemes,whicharetherstHIBEsthatdonotrelyonbilinearpai ThisresearchwaspartlysupportedbyDFGgrantsBO2755/1-1andSO514/4-3andwithintheCollaborativeResearchCenterSFB876,projectA2.The nalauthenticatedversionisavailableonlineathttps://doi.org/10.1007/978 26underwhichamalicioususercancreatemultiplefakeOSNaccountsTheproblemIthasbeenreportedthat15millionfakeorcompromisedFacebookaccountswereonsaleduringFebruary20107FakeSybilOSNaccountscanbeusedforvariousp Howeverbyabriefcomputationweseethatno2-stateDFAcanseparatethesetwowordsSosep100000103Notethatsepwxsepxwbe-causethelanguageofaDFAcanbecomplementedbyswappingtherejectandacceptstatesWeletSnmaxw6xjwjjxjns processorstoagreementalargemajoritybutnotnecessarilyallgoodprocessorsarebroughttoagreement13ResultsWeusethephrasewithhighprobabilitywhptomeanthataneventhappenswithprobabilityatleast101ncforeveryconsta min(jSj;jSj);whereS=VnSandE(S;S)isthenumberofcutedges,thatis,thenumberofedgesfromStoS.TheSparsestCutproblemasksto ndacut(S;S)withsmallestpossiblesparsity(S).Wedenotet

Download Document

Here is the link to download the presentation.
"Theorem2.ThereisanecientO(logn) HKapproximationalgorithmforthek-Tour"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents