PDF-Theorem2.ThereisanecientO(logn) HKapproximationalgorithmforthek-Tour
Author : pamella-moone | Published Date : 2015-11-04
FinallyifnoneoftheabovehappensthesetsBx31andBy32arecompletelydisjointSoifthethirdconditionholdsthetwotoursT1T2arecompletelydisjointcoveringtogetherk0distinctverticesWecanconnectthemtoea
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Theorem2.ThereisanecientO(logn)HKappr..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Theorem2.ThereisanecientO(logn)HKapproximationalgorithmforthek-Tour: Transcript
FinallyifnoneoftheabovehappensthesetsBx31andBy32arecompletelydisjointSoifthethirdconditionholdsthetwotoursT1T2arecompletelydisjointcoveringtogetherk0distinctverticesWecanconnectthemtoea. CS-130AWBLT1' &$ % Linkedbinarytrees.InsertandDeleteMin(orDeleteMax)takesO(logn)time.CanMeld(Merge)twoleftisttreesinO(logn)time. CS-130AWBLT2' &$ % ExtendedBinaryTrees (Addexternalnodes) CS-130AWBL Example :AsubsetHofagroupGisasubgroup()Hisnonemptyand,wheneverx;y2H;thenxy 12H:Theorem2 :AnonemptysubsetHofanitegroupGisasubgroup()Hisclosed.2 Theorem2 :AnonemptysubsetHofanitegroupGisasubgroup()His p logn)asinthebestknownapproximationalgorithmforVertexCoverbyKarakostas[11].ThepreviouslybestknownapproximationratioforMinUnCutisO(logn)[9],andthebestpreviouslyknownap-proximationforMin2CNFDeletionisO 6n:Moreprecisely,nXj=1(j)=2 12n2+O(nlogn)asn!1:Themaximalorderof(n)issomewhatlarger,andwasdeterminedbyGronwallin1913,seeHardyandWright[7,Theorem323,Sect.18.3and22.9].Theorem2.2(Gronwall)Theasymptot Group GeneratingSet Size Where Sn,n2 (ij)'s n(n 1) 2 Theorem2.1 (12);(13);:::;(1n) n 1 Theorem2.2 (12);(23);:::;(n 1n) n 1 Theorem2.3 (12);(12:::n)ifn3 2 Theorem2.5 (12);(23:::n)ifn3 2 Corollary2.6 Inlecture19,wesawanLPrelaxationbasedalgorithmtosolvethesparsestcutproblemwithanapproximationguaranteeofO(logn).Inthislecture,wewillshowthattheintegralitygapoftheLPrelaxationisO(logn)andhencethisistheb Fromthescalinglaw,weobservethefollowingscalinglimitsonthepermissiblesparsityintermsofthedimensionalityofthesearchspace:kontheorderof1=)kvk0.n=p logn(6)kontheorderofn=)kvk0.p n=p logn(7)Thatis,asearchs log(1="))fractionofallconstraintsif1 "fractionofallconstraintsissatisable.RecentlyTrevisan[17]developedanalgorithmthatsatises1 O(3p "logn)fractionofallconstraints(thiscanbeimprovedto1 O(p "logn)[9]) kn3=2)factor;thisisonlyap kfactorlooserthanthatof[25].Oursecondapplicationisacollectionofvarioushierarchicalidentity-basedencryp-tion(HIBE)schemes,whicharetherstHIBEsthatdonotrelyonbilinearpai ThisresearchwaspartlysupportedbyDFGgrantsBO2755/1-1andSO514/4-3andwithintheCollaborativeResearchCenterSFB876,projectA2.Thenalauthenticatedversionisavailableonlineathttps://doi.org/10.1007/978 26underwhichamalicioususercancreatemultiplefakeOSNaccountsTheproblemIthasbeenreportedthat15millionfakeorcompromisedFacebookaccountswereonsaleduringFebruary20107FakeSybilOSNaccountscanbeusedforvariousp Howeverbyabriefcomputationweseethatno2-stateDFAcanseparatethesetwowordsSosep100000103Notethatsepwxsepxwbe-causethelanguageofaDFAcanbecomplementedbyswappingtherejectandacceptstatesWeletSnmaxw6xjwjjxjns processorstoagreementalargemajoritybutnotnecessarilyallgoodprocessorsarebroughttoagreement13ResultsWeusethephrasewithhighprobabilitywhptomeanthataneventhappenswithprobabilityatleast101ncforeveryconsta min(jSj;jSj);whereS=VnSandE(S;S)isthenumberofcutedges,thatis,thenumberofedgesfromStoS.TheSparsestCutproblemaskstondacut(S;S)withsmallestpossiblesparsity(S).Wedenotet
Download Document
Here is the link to download the presentation.
"Theorem2.ThereisanecientO(logn)HKapproximationalgorithmforthek-Tour"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents