/
VISVESVARAYA TECHNOLOGICAL UNIVERSITY VISVESVARAYA TECHNOLOGICAL UNIVERSITY

VISVESVARAYA TECHNOLOGICAL UNIVERSITY - PowerPoint Presentation

pamella-moone
pamella-moone . @pamella-moone
Follow
353 views
Uploaded On 2018-09-21

VISVESVARAYA TECHNOLOGICAL UNIVERSITY - PPT Presentation

BELGAUM590010 Seminar presentation on LIGHT TREE ID: 673717

optical light wavelength traffic light optical traffic wavelength multicast network path unicast digital switch wdm transceiver single number tree

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "VISVESVARAYA TECHNOLOGICAL UNIVERSITY" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

VISVESVARAYA TECHNOLOGICAL UNIVERSITY

BELGAUM-590010

Seminar presentation on “LIGHT TREE” by NAME USN Vasanth.M 1AT07TE059 Under The Guidance Of

ATRIA INSTITUTE OF TECHNOLOGY Anandanagar, Bangalore-560024

Mr.Ravindra

Internal Guide, Lecturer , Department of TESlide2

Contents Introduction Block DiagramComparison between CWDM and DWDM Light Path

Light Tree- exampleArchitecture of wavelength-routed optical networkMulticast Switch ArchitecturesAn MWRS based on a splitter bankMWRS based on a “drop and continue” switch.The Optical layerUnicast ,Broadcast and Multicast Traffic.Light trees problem formulationsAdvantages and DisadvantagesFuture enhancementConclusion References Slide3

Introduction

Today, there is a general consensus that in near future wide area networks (WAN) will be based on Wavelength Division Multiplexed (WDM) optical networks. Depending on the underlying physical topology networks can be classified into three generations:

1st Generation: They employ copper-based or microwave technology. eg. Ethernet.2nd Generation: These networks use optical fibers for data transmission but switching is performed in electronic domain. eg. FDDI.3rd Generation: These networks both data transmission and switching is performed in optical domain. eg. WDM. Slide4

Block diagram

Traditional Digital Fiber Optic Transport

Single Pair of Fibers

Single Pair of Fibers

Digital Transceiver

Digital Transceiver

Digital Transceiver

Digital Transceiver

Digital Transceiver

Digital Transceiver

Digital Transceiver

Digital Transceiver

Single Pair of FibersSlide5

Digital fiber optic transport using WDM

Digital Transceiver

Digital TransceiverDigital TransceiverDigital TransceiverDigital TransceiverDigital TransceiverDigital TransceiverDigital Transceiver

Single Pair

of Fibers

WDM MUX

WDM MUX

Fiber Optic Transport using WDMSlide6

Comparison between CWDM and DWDM

Two types of WDMCoarse wavelength division multiplexing(CWDM)Dense wavelength division multiplexing(DWDM)

Feature CWDM DWDMWavelengths per fiber 8 – 16 40-80Wavelength spacing 2500GHz (20nm) 100 GHz (0.8nm)Wavelength capacity Up to 2.5 Gbps Up to 10 GbpsAggregate Fiber capacity 20 – 40 Gbps 100 – 1000

GbpsOverall cost

Low

Medium

Applications

Enterprise,

metro-access

metro-core,

regionalSlide7

Light Path

A light path is an all-optical channel which may be used to carry circuit switched traffic and it may span multiple fiber links.A light path can create logical (or virtual) neighbors. A light path carries direct traffic between nodes it interconnects.

Major Objective of light path communication is to reduce the number of hops.Under light path communication the network employs an equal number of transmitters and receivers because light path operates on point to point basis.Slide8

Light Tree

A light tree is a point to point multipoint all optical channel which may span multiple fiber links.It enables single-hop communication between a source node and a set of destination nodes.

A light tree based virtual topology can reduce the hop distance, thereby increasing the network throughput.Slide9

Light tree exampleFigure : Architecture of a wavelength-routed optical network and it’s layered graphSlide10

Light tree example

Contd…We refer light tree as a point to multi point extension of light path.

Many multicasting applications exist such as teleconferencing, software/file distribution including file replication on mirrored sites, distributed games, Internet news distribution-mail mailing lists.In future as multicast applications become more popular and bandwidth intensive.Slide11

Architecture of Wavelength-Routed Optical Network

NSFNET backbone topologySlide12

Virtual links induced by the light tree consisting of source UT and destination nodes TX,NE and IL.

Architecture of Wavelength-Routed Optical Network contd…Slide13

Architecture of Wavelength-Routed Optical Network

contd…A WDM control network may require efficient delivery of broadcast traffic. which may be modelled as a layered graph in which each layer represents a wavelength and each physical fibre has a corresponding link on each wavelength layer.

The switching state of each wavelength-routing switch (WRS) is managed by a controller.A light tree based broadcast layer may provide an efficient transport mechanism for such multicast applications.Slide14

Multicast Switch Architectures

Linear divider combiner (LDC)Slide15

Multicast Switch Architectures

contd…linear divider combiner with two input fibers (the Pi’s), two output fibers (the Po’s) two dividers and four control signals (the αjs).

The LDC acts as a generalized optical switch with added functions of multicasting and multiplexing.Formula Derivation: The values of α1, α2, α3, α4 control the proportion of the input power that can be sent to the output links. Let Pi1 and Pi2 be the power on the input links, and let Po1 and P02 be the output powers. Then,Po1= (1-α1) (1-α3) Pi1+ (1-α2) α3Pi2 andPo2= α1 (1-α4) Pi1+α1α4Pi2Slide16

An MWRS based on a splitter bank

A multi-cast capable wavelength – routing switchSlide17

An MWRS based on a splitter bank

contd…An optical splitter splits the input signal into multiple identical output signals. Since an optical splitter is a passive device the power from at least one output signal of an n-way optical splitter is less than or equal to 1/n times the input power.Slide18

MWRS based on a “drop and continue” switch

In a drop and continue switch a light path can be terminated at a node and simultaneously an identical copy of the light path can be allowed to continue to another node in the network.

Technique:It is the special case of light tree , By employing a drop and continue switch we can construct a chain of nodes which are connected by a drop and continue light path.All nodes on the chain will receive transmissions on a drop and continue light path where light is dropped .Slide19

The Optical Layer

Definition:The optical layer provides light paths to the higher layers. In addition to the pass through capability provided by the optical layer other features include are:

TransparencyWavelength reuseReliabilityVirtual topologyCircuit switching.Slide20

Unicast

, Broadcast and Multicast TrafficUnicast Traffic:

IP/TV on Demand use unicast traffic. Each user can request the program at a different time. with the number of simultaneous users limited by the available bandwidth Unicast traffic is sent from a single source to a single destination IP address.Slide21

Unicast

traffic Contd…

Example of Single Unicast TrafficExample of Multiple-Stream Unicast TrafficSlide22

Broadcast Traffic:

Broadcast traffic uses a special IP address to send a single stream of data to all of the machines on the local network. A broadcast address typically ends in 255. (for example, 192.0.2.255) or has 255 in all four fields (255.255.255.255).

Example of Broadcast TrafficSlide23

Multicast Traffic:

Unlike unicast addresses, when a data stream is sent to one of these addresses potential recipients of the data can decide whether or not to receive the data.If the user wants the data the user's machine receives the data stream if not the user's machine can ignore it.

Example of multicast traffic Slide24

Combining Unicast and Multicast Traffic:

Example of Combined Multicast and Unicast TrafficSlide25

Combining

Unicast and Multicast Traffic contd…

If the routers in a network are not capable of handling multicast IP/TV can use unicast transmissions to send the multimedia content across the non multicast -enabled router.A server on the other side of the router can then use multicast transmission to deliver the content to its local users.Slide26

Light trees: problem formulations

Here, we state the problem of unicast traffic. We are given the following inputs to the problem:

A physical topology Gp = (V, Ep) consisting of a weighted undirected graph.The number of wavelength channels carried by each fibre =W.An NxN traffic matrix, where N is the number of network nodes and the (i, j) th element is the average rate of traffic flow from node i to node j.The number of wavelength tunable lasers (Ti) and wavelength tunable filters (Ri) at each node.Slide27

Advantages and Disadvantages:

Advantages:Single hop communication.Increased Bandwidth.

Broadcasting and Multicasting.Disadvantages:Difficulties arising from limited number of transceivers per node.Difficulties arising from limited number of wavelengths.Slide28

Future enhancement

Wavelength assignment algorithm should be explored in future research.To Minimize wavelength cost.Slide29

Conclusion

A novel WDM WAN architecture based on light trees that are capable of supporting broadcasting and multicasting over a wide-area network by employing a minimum number of optoelectronic devices.Such WDM WAN can provide a very high bandwidth optical layer which efficiently routes unicast, broadcast and multicast packet-switch traffic.

Preliminary results show that if we employ a set of light trees, then significant savings can be achieved in terms of the number of optoelectronic devices that are required in the network.Slide30

References 1. Laxman H.

Sahasrabudhe and Biswanth mikhergee, Light trees : Optical Multicasting For Improved Performance in Wavelength-Routed networks.2. Biswanth Mukhergee, Dhritiman Banergee, S.Ramamurthy And Amarnath Mukhergee,The Principles for Designing a wide-area WDM Optical Network,IEEE/ACM Trans.Networking.3. Laxman H. Sahasrabudhe, Light trees: An Optical Layer for Tomorrow’s IP Networks, 4. www.ucdavis.edu  5. Rajiv Ramaswami and kumara N. Sivarajan Optical Networks.  6. www.ieng.com/univercd/cc/td/doc/product/software