PPT-Few-Shot Learning with Graph Neural Networks
Author : pasty-toler | Published Date : 2019-12-26
FewShot Learning with Graph Neural Networks CS 330 Paper Presentation Problem Image source Ravi Sachin and Hugo Larochelle Optimization as a model for fewshot learning
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Few-Shot Learning with Graph Neural Netw..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Few-Shot Learning with Graph Neural Networks: Transcript
FewShot Learning with Graph Neural Networks CS 330 Paper Presentation Problem Image source Ravi Sachin and Hugo Larochelle Optimization as a model for fewshot learning 2017 11 Some approaches to fewshot learning. 1. Recurrent Networks. Some problems require previous history/context in order to be able to give proper output (speech recognition, stock forecasting, target tracking, etc.. One way to do that is to just provide all the necessary context in one "snap-shot" and use standard learning. Cost function. Machine Learning. Neural Network (Classification). Binary classification. . . 1 output unit. Layer 1. Layer 2. Layer 3. Layer 4. Multi-class classification . (K classes). K output units. Deep Learning @ . UvA. UVA Deep Learning COURSE - Efstratios Gavves & Max Welling. LEARNING WITH NEURAL NETWORKS . - . PAGE . 1. Machine Learning Paradigm for Neural Networks. The Backpropagation algorithm for learning with a neural network. Table of Contents. Part 1: The Motivation and History of Neural Networks. Part 2: Components of Artificial Neural Networks. Part 3: Particular Types of Neural Network Architectures. Part 4: Fundamentals on Learning and Training Samples. Week 5. Applications. Predict the taste of Coors beer as a function of its chemical composition. What are Artificial Neural Networks? . Artificial Intelligence (AI) Technique. Artificial . Neural Networks. Deep Neural Networks . Huan Sun. Dept. of Computer Science, UCSB. March 12. th. , 2012. Major Area Examination. Committee. Prof. . Xifeng. . Yan. Prof. . Linda . Petzold. Prof. . Ambuj. Singh. Deep . Learning. James K . Baker, Bhiksha Raj. , Rita Singh. Opportunities in Machine Learning. Great . advances are being made in machine learning. Artificial Intelligence. Machine. Learning. After decades of intermittent progress, some applications are beginning to demonstrate human-level performance!. 1. Table of contents. Recurrent models. Partially recurrent neural networks. . Elman networks. Jordan networks. Recurrent neural networks. BackPropagation Through Time. Dynamics of a neuron with feedback. Introduction 2. Mike . Mozer. Department of Computer Science and. Institute of Cognitive Science. University of Colorado at Boulder. Hinton’s Brief History of Machine Learning. What was hot in 1987?. Ali Cole. Charly. . Mccown. Madison . Kutchey. Xavier . henes. Definition. A directed network based on the structure of connections within an organism's brain. Many inputs and only a couple outputs. Dr David Wong. (With thanks to Dr Gari Clifford, G.I.T). The Multi-Layer Perceptron. single layer can only deal with linearly separable data. Composed of many connected neurons . Three general layers; . Lingxiao Ma. . †. , Zhi Yang. . †. , Youshan Miao. ‡. , Jilong Xue. ‡. , Ming Wu. ‡. , Lidong Zhou. ‡. , . Yafei. Dai. . †. †. . Peking University. ‡ . Microsoft Research. USENIX ATC ’19, Renton, WA, USA. networks deep recurrent and dynamical to perform a variety of tasks using evolutionary and reinforcement learning algorithms Analyzed optimized networks using statistical and information theoretic too Eli Gutin. MIT 15.S60. (adapted from 2016 course by Iain Dunning). Goals today. Go over basics of neural nets. Introduce . TensorFlow. Introduce . Deep Learning. Look at key applications. Practice coding in Python.
Download Document
Here is the link to download the presentation.
"Few-Shot Learning with Graph Neural Networks"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents