/
New New

New - PowerPoint Presentation

pasty-toler
pasty-toler . @pasty-toler
Follow
378 views
Uploaded On 2016-11-06

New - PPT Presentation

t e c h n ol o gi e s of TEM in C h ina G u o qi a ng X ue W ei y ing C hen D o n g ya ng H o u I n s t itute o f G e o l o ID: 485265

source tem loop continued tem source continued loop charge seismic offset point electric 2013 central modified infinitesimal ele imaging

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "New" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

New technologies of TEM in China

Guoqiang Xue, Weiying Chen, Dongyang Hou

Institute of Geology and Geophysics, Chinese Academy of Sciences

J

o

ur

n

al

of

G

e

o

p

h

y

sics

&

R

e

mo

t

e

S

e

n

s

i

ngSlide2

OUTLINES1. Introduction

2. new technology1-Infinitesimal point charge3.

new technology2-Electric source short-offset TEM4. new technology3-Modi

f

ied

cen

t

ral

l

oo

p

T

E

M

5

.

n

ew

tec

hno

l

og

y

4

-

EM

p

se

u

d

o

-

sei

s

m

ic

i

m

a

g

i

n

g

6

.

Re

f

erenceSlide3

1. Introduction

T

r

a

ns

ie

n

t ele

c

tr

o

m

a

g

n

etic

m

et

h

o

d

T

EM)is a time domain method in electromagnetic exploration, which is sensitive to conductive targets and have been widely used in mineral source, coal, ground water, environment and engineering investigation(Nabighian,1991).

1

.1

TEM

I

nt

r

o

ducti

o

nSlide4

1. Introduction continued1.2 Some vit

al issues in TEM explorationUnderstan

d and calculate the TEM response base on its physical mechanism

.

G

rea

t

er

i

nv

e

st

i

g

a

ti

o

n

d

e

p

th

is needed to meet the need from deep mineral deposits and coal hydrogeology.Higher precision and faster detection for both shallow and deep investigation.Efficient processing method suitable to 2D and3D data.Slide5

2. Infinitesimal Point Charge2.1 Tr

aditional approach to calculate TEM responsedue to a f

inite source1). Regard the source as a dipole(Kaufman,1987) 2). Regard

t

h

e

s

ou

rce

as

a

s

up

er

p

o

s

i

ti

o

n

of manydipoles(Nabighian,1991)The relative error drops with the decrease of dipole dimension. The smallest and intrinsic source should be point chargeSlide6

2. Infinitesimal Point Charge continued

t xx 2

 1 J x,   x,  Te4t 

d

x

d

0 D   2.2 BasisAccording to Maxwell equations so long as an electric charge varies with time it willexcite electromagnetic wave .2.3 MathematicsBased on poi

n

t

c

h

a

r

g

e

h

y

po

t

h

esi

s

,

T

EM

f

ield

a

n

al

y

tical

s

o

l

u

ti

o

n

h

as

b

e

e

n

d

e

r

i

v

ed

b

y i

n

tr

o

d

u

ci

n

g

ti

m

e

-

do

m

ain

G

r

een

f

un

cti

o

n

.

I

n

te

g

r

al

f

or

m

u

la

h

as

b

een

us

ed

to tra

ns

f

o

r

m

ele

c

tr

o

m

a

g

n

etic

f

ield

d

a

m

p

i

n

g

w

a

v

e

e

q

u

ati

o

n

i

n

to

G

r

e

e

n

f

un

cti

o

n

i

n

te

g

r

al

f

o

r

m

.

A

ux

iliary

p

ath

h

as

b

e

e

n

c

o

n

s

tr

u

cted

f

o

r

s

o

l

v

i

n

g

s

i

ngu

la

r

ity

p

r

ob

le

m

.

F

o

u

r

h

ea

v

y

g

e

n

e

r

alized

i

n

te

g

r

al

f

or

m

u

la

o

f

ti

m

e

-

do

m

ain

elect

ro

m

a

g

n

etic

f

ield

r

esp

o

n

s

e

h

as

b

e

e

n

a

r

r

i

v

ed

b

y

u

s

i

n

g

J

o

r

d

a

n

'

s le

mm

a,

t

h

e

r

esid

u

e

t

h

e

o

r

em

a

n

d

g

e

n

e

r

aliz

e

d

f

un

cti

o

n

m

et

h

od

.

Dir

e

c

t

-

ti

m

e

-

do

m

ain

e

x

act

s

o

l

u

tion

o

f

D

A

le

m

b

e

r

t

e

q

u

ati

o

n

s

f

irst

l

y

h

as

b

e

e

n

d

e

r

i

v

e

d

(

Z

h

o

u

,

2013

;X

u

e

,

2014

)

.

E

(

x

,

t

)

Slide7

2.4 Comparison with dip

ole2. Infinitesimal Point Charge continuedSolid line repr

esents infinitesimal point charge (left figure) and measur

e

d

d

a

ta

(

r

i

g

h

t

fi

g

u

r

e

),

dashed represents dipole (both figures)It is shown that the field of the infinitesimal point charge in the near source zone is different from that of dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source

b

e

tt

e

r

th

a

n dipo

l

e

sour

c

e

.Slide8

3. Electric Source Short-offset TEM3.1 Bac

kgroundLoop source excites o

nly horizontal induction current, while grounded wire source has both ho

r

iz

o

n

tal

a

n

d

v

e

r

tical

i

n

d

u

cti

o

n current. This leads to loop source TEM only sensitive to conductive targets.Detection depth of loop source TEM usually is shallower than 1km.Difficult to lay the transmitting loop at mountain areas.Slide9

3. Electric Source Short-offset TEM continued3

.1 Background ContinuedLOTEM(Str

ack,1992)Advantage: great detectiondepth (more than10km)

Di

s

a

dv

a

nt

a

g

e

s

:

g

r

eat

s

o

u

r

c

e- receiver distance (2~20Km), weak signal, volume effect, poor precision,MTEM(Ziolkowski,2007)Advantage: great power, pseudorandom transmitting source; multi-channel array, multi component, 3D detection; Pse

u

d

o

-

s

eis

m

ic

i

m

a

g

i

n

g

o

f

d

ata

Di

s

a

dv

a

nt

a

g

e

:

h

ea

v

y

,

h

a

r

d

to

c

o

nduct at mountain area; mainly used in marine; systemic and robust equipment have not been introduce to chinaSlide10

3. Electric Source Short-offset TEM continued3

.2 DefinitionShort-offset TEM (abbreviate

d to SOTEM) means that the distance between transmitter and receiver is

a

pp

r

ox

i

m

a

t

e

l

y

e

q

u

al

t

o

o

r le

ss than the exploration depth(Xue,2013).Typical SOTEM layout diagramSlide11

3. Electric Source Short-offset TEM continued3

.3 Observation area for each EM component

5

3

9

0

o

x

y

3

5

9

0

o

6

0

o

6

0

o

y

4

4

4

7

0

o

7

0

o

7

0

o

7

0

o

4

x

x

y

5

16

0

o

16

0

o

5

4

4

4

x

4

7

0

o

7

0

o

7

0

o

7

0

o

x

5

5

3

90

o

6

0

o

9

0

o

3

6

0

o

x

y

3

3

16

0

o

E

y

x

16

0

o

E

y

y

Ez

Hx

Hy

HzSlide12

3.4 All-time apparent resistivity

1E-005

0.0001

0.001

0.01

0.1

1

1E-005

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

t

y

p

e

H

a

ll

ti

me

e

a

r

ly

t

ime l

a

te

t

ime

t

(

s)

r

1

=

1

00

W

.

m

h

1

=

5

00

m

r

2

=

1

0

W

.

m

h

2

=

5

00m

r

3

=

1

0

0

W

.

m

3

.

E

l

e

c

t

r

i

c

So

u

rce

S

h

or

t

-

o

f

f

set

TE

M

cont

i

n

u

ed

0

.

000

1

0

.

00

1

0

.

0

1

0

.1

1

10

100

1000

p

2

50

25

10

5

C

a

lcul

at

ed

by

p

o

l

y

n

o

m

i

a

l

f

it

t

ing

m

e

t

h

o

d

C

a

lcul

at

ed

by

dicho

t

o

m

y

m

e

t

h

o

dSlide13

3. Electric Source Short-offset TEM continued3

.5 ImagingElectric field underneath the T

x

2

x

u

E

(

z

,t

)

=

I

l

ρ

[

e

rf

(

)

-

1 +( 2u- 1 )(1+ u2)e-u /2 ]πz32 π 2 22Time of maximum of Ex for a given depthz=zimag

e

d

E

x

(

z

,

t)

=0

dt

I

m

ag

e

depth

i

mag

e

z

2

(

t)

=

4t

μ

0

σ

Hz

f

r

o

m

a

cur

r

ent

f

il

a

m

ent

l

ocated at image depthzH 

I

y x

L

x

L

4

y

2

z

2

(

(

x

1

)

2

y

2

z

2

)

1

/

2

(

(

x

1

)

2

y

2

z

2

)

1

/

2

s

l

o

w

ne

s

s

0

d

t

=

1

z

μ

σ

d

z

2

C

o

n

d

uc

t

i

v

ity of

the

image

0

2

d

2

t

 d

z2

Sour

ce im

age fo

r a

three

-lay

er modelSlide14

3. Electric Source Short-offset TEM continued

3.6 Case studyInvestigation o

f hydrous coal mine in Shandong Province

Di

s

c

o

v

e

r

y

o

f

Da

w

a

n

g

z

h

u

a

ng Iron Ore in Anhui ProvinceSlide15

4. Modified Central Loop TEMRegular ce

ntral loopTEM has only one survey point

at once layout, which leads to energy waste and low work efficiency4

.1

R

e

a

s

o

ns

T

he

v

er

t

ic

a

l

m

ag

netic

response in the centralpart of loop is Approximately equal (Xue,2012)The modified deviceutilize the signal from a bigger central part which about 1/3 of loop area.Slide16

4. Modified Central Loop TEM continued4.2 Modified theo

ry1zI0

k2a3H () [3 (3  3k a  k2a2 )ek1a ]

1 1

3

2

a

t

5

t

B

z

(

t

)

4

t

2I a2  L (t)  0 ( 0 0 )2 2 0 0 1 2 1 3 12 31zIk ak1a H () [Z (r) (Z (r) 

Z

(

r

)

k

a

Z

(

r

)

k

a

)

e

]

0 1

0 0

2

3

L

z

a

6

0

t

u Z

(

r

)

I

(B (t))  [ tB(t)

]

t

t

C

e

n

tr

al

loop

M

o

d

i

f

ied

C

e

n

t

r

al

loopSlide17

4. Modified Central Loop TEM continued4.3 Modified instru

ments

Air coil:heavyand with smallreceivearea(100m2

)

M

ag

ne

t

ic

p

r

o

be: p

o

r

ta

ble

a

nd

w

ith

great receive area(10000m2, 20000m2)Probe 1coilProbe 2

0

.

01

0.

1

10

1

t

/

ms

10000

1000

100

10

1

0

.

1

0

.

01

S

i

g

n

i

f

ic

a

ntly

inc

r

e

a

s

e

t

he

s

i

g

n

a

l st

r

en

gthSlide18

5. TEM Pseudo-seismic Imaging

5.1 B

asic theory(Xue,2013)Background1). The precision in

T

EM

p

r

o

s

p

e

c

ti

n

g

is

r

elati

v

e

low compare with seismic method 2). Interpretation and judgment always be made based on experience of interpreter 3). 2D and 3D TEM inversion are time-consuming and expensive.For the aim to improve th

e

p

r

e

c

i

s

i

o

n

,

c

a

n

w

e

i

n

te

r

p

r

et

T

EM

d

ata

s

i

m

ilar

to

s

eis

m

ic

m

et

h

od

?Basic equation constructionDiffusion equations for TEM2 2   U(r, )  

(

r

)

U

(

r

,

)

0

0

1

2

t

3

2

H

m

(

t

)

e

4

t

U

(

)

d

H

(

r

,

p

2

)

U

(

r

,

p

)

H

m

(

r

,

t

)

(

r

)

t

H

m

(

r

,

t

)

0

Di

f

f

u

s

i

o

n

e

q

u

ati

o

n

s

for s

eismic

Inv

erse

Laplace

trans

form

1

2

2

1

1

3

n

2

j

i

4

t

i

4

t

i

t

i

n

1

j

2

q

q

q

H

2 1 1

j

( n



n1

)Um

)

j 1



j 1

)U j



ne

(

(

 

)U

 2

e

( e

2

t

Di

s

c

r

eteSlide19

5. TEM Pseudo-seismic Imaging continued

5

.2 Key techniquesWavelet extractionKirchhoff

in

t

e

g

r

al

f

u

n

c

t

ion

1

 u(x, y, z,t)  [u] (1)  1[ u ]  1 r [ u ]dQ  F4 Q  n r r n vr n t  r0----main idea o

f

ca

l

c

u

l

a

t

i

o

n

1

)

.

n

o

r

m

a

l

i

z

e

m

e

t

h

o

d

h

a

s

b

ee

n

a

d

o

p

t

e

d,

2). optimizing normalizing parameter havebeen selected by deviation theory 3).Newton iterative f

o

r

m

t

o

b

e

u

s

e

d

t

o

m

a

ke

t

h

e

t

r

a

n

s

f

o

r

m

e

d

w

a

v

e

f

i

e

l

d

s

t

a

b

l

e

a

n

d

r

e

li

a

b

l

e

.

M

i

g

r

a

t

i

o

n

i

m

ag

i

n

gSlide20

5. TEM Pseudo-seismic Imaging continued5.3 Model

s simulation1

 5 m,h1  80m2  500  m1

1

m

,

h

1

6

0

m

2

 10 m, h2  60m3  100  m1  10  m2  300  mh  70mSlide21

5. TEM Pseudo-seismic Imaging continued5.4 Cas

e studyRecognizing electrical

interfacein Shanxi provinceDetecting deep electric

s

t

ruc

t

u

r

e

a

nd d

is

t

rib

u

t

i

o

n in

G

uan

gdong provinceSlide22

6. ReferenceG.Q. Xue, Geliu

s, L.Xiu 3-D Pseudo-seismic Imaging

of TEM data– a Feasibility Study. GeophysicalProspecting, 2013, 61

(

S

1

)

,

:

561–

5

7

1

d

o

i

:

1

0

.

111

1

/j.1365-2478.2012 . 01109.Guo-Qiang X, Wei-Ying C, Nan-Nan Z, Hai L, Hua-Sen Z (2013) Understanding of Grounded-Wire TEM Sounding with Near-Source Configuration. J Geophys Remote Sensing 2:113. doi: 10.4172/

21

6

9

0049

.

10

0

0

1

1

3

K

a

u

f

ma

n

,

A

.

A

.,

a

n

d

K

elle

r

,

G

.

V

.,

1983

,

F

r

e

qu

e

n

cy

and transient sounding: Methods in geochemistry andgeophysics: Elsevier Publ. Co, 1–32.Nabighian, M.

N

.,

a

n

d

M

ac

n

a

e

,

J.

C

.,

1991

,

T

i

m

e

-

d

o

ma

in

ele

c

t

ro

ma

g

n

e

ti

c

p

ro

s

p

e

c

ting

m

e

th

o

d

s:

in

N

a

bi

g

hi

a

n

,

M

.

N

.

(

e

d

.

)

,

E

l

e

c

t

r

o

ma

g

n

e

ti

c

m

e

th

o

d

s

i

n

a

pplied

geoph

ysic

s–Theo

ry volu

me II,

Part

A, S

ocie

ty of

Exp

loratio

Geoph

ysici

sts, T

ulsa,

Strack

K M.E

xplor

ation

with dee

p tr

ansien

t elect

romagn

etic m

ethod[M],

Els

evier

,1992

Xue

, G.Q

., Bai,

C.Y

., and

Yan,

Y.,

2012, D

eep so

unding T

EM inve

stigati

on m

ethod

based

on a

modif

ied f

ixed

centr

al-loop

syst

em: Jo

urnal

of A

pplied

Geo

physics,

76(2012

) 23–32.

Xue

, G.Q

., Wan

g, H

.Y., Y

an S., Z

hou

N.N.

2014, Tim

e-do

main G

reen f

unctio

n soluti

on for

tra

nsien

telec

tromagn

etic

field.

Chinese

Jour

nal g

eophysics

,57(2

:671-678

)Z

hou

Nan-n

an, X

ue Gu

o-qia

ng, W

ang He-

yuan

. Compa

rison

of

the time

-doma

in el

ectro

magne

ticf

ield from

an inf

initesimal point

char

ge and

dipole

sour

ce. App

lied

Geophysics,

2013,10(

3):349-356Ziolko

wski A

, Hobbs B. A, W

right D

(2007)

Multi-t

ransie

nt el

ectromagnetic demo

nstrati

on s

urvey

in F

ranc

e.Geoph

ysics

72: 197-

209.Slide23

OMICS International Open AccessMembership enables academic an

d research institutions, funders

and corporations to actively encourage open access i

n

s

ch

o

l

a

r

l

y

c

o

mm

u

n

ic

a

ti

o

n

and the dissemination of research published by their authors.For more details and benefits, click on the link below: http://omicsonline.org/member ship.php

Related Contents


Next Show more