Pascals triangle and the binomial theorem mcTYpascal - PDF document

Pascals triangle and the binomial theorem mcTYpascal
Pascals triangle and the binomial theorem mcTYpascal

Pascals triangle and the binomial theorem mcTYpascal - Description


1 binomialexpression isthesumordi64256erenceoftwotermsForexample 1 2 y a areallbinomialexpressions Ifwewanttoraiseabinomiale xpressiontoapowerhigherthan2 forexampleifwewantto64257nd 1 itisverycumbersometodothisbyrepeatedlymultiplying 1 byitselfInth ID: 61465 Download Pdf

Tags

binomialexpression isthesumordi64256erenceoftwotermsForexample

Download Section

Please download the presentation from below link :


Download Pdf - The PPT/PDF document "Pascals triangle and the binomial theore..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Embed / Share - Pascals triangle and the binomial theorem mcTYpascal


Presentation on theme: "Pascals triangle and the binomial theorem mcTYpascal"— Presentation transcript


Pascal'striangleandthebinomialtheorem mc-TY-pascal-2009-1.1 Abinomialexpressionisthesum,ordi erence,oftwoterms.Forexample,x+1;3x+2y;abareallbinomialexpressions.Ifwewanttoraiseabinomialexpressiontoapowerhigherthan2(forexampleifwewantto nd(x+1)7)itisverycumbersometodothisbyrepeatedlymultiplyingx+1byitself.Inthisunityouwilllearnhowatriangularpatternofnumbers,knownasPascal'striangle,canbeusedtoobtaintherequiredresultveryquickly.Inordertomasterthetechniquesexplainedhereitisvitalthatyouundertakeplentyofpracticeexercisessothattheybecomesecondnature.Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto:generatePascal'striangleexpandabinomialexpressionusingPascal'striangleusethebinomialtheoremtoexpandabinomialexpressionContents1.Introduction22.Pascal'striangle23.UsingPascal'striangletoexpandabinomialexpression34.Thebinomialtheorem6 www.mathcentre.ac.uk1c\rmathcentre2009 1.IntroductionAbinomialexpressionisthesum,ordi erence,oftwoterms.Forexample,x+1;3x+2y;abareallbinomialexpressions.Youwillbefamiliaralreadywiththeneedtoexpandbracketswhensquaringsuchquantities.Youwillknow,forexample,that(x+1)2=(x+1)(x+1)=x2+x+x+1=x2+2x+1Ifwewanttoraiseabinomialexpressiontoapowerhigherthan2(forexampleifwewantto nd(x+1)7)itisverycumbersometodothisbyrepeatedlymultiplyingx+1byitself.Inthisunityouwilllearnhowatriangularpatternofnumbers,knownasPascal'striangle,canbeusedtoobtaintherequiredresultveryquickly.2.Pascal'striangleWestarttogeneratePascal'strianglebywritingdownthenumber1.Thenwewriteanewrowwiththenumber1twice:111Wethengeneratenewrowstobuildatriangleofnumbers.Eachnewrowmustbeginandendwitha1:1111*11**1Theremainingnumbersineachrowarecalculatedbyaddingtogetherthetwonumbersintherowabovewhichlieabove-leftandabove-right.So,addingthetwo1'sinthesecondrowgives2,andthisnumbergoesinthevacantspaceinthethirdrow:111&.1211**1 www.mathcentre.ac.uk2c\rmathcentre2009 Thetwovacantspacesinthefourthrowareeachfoundbyaddingtogetherthetwonumbersinthethirdrowwhichlieabove-leftandabove-right:1+2=3,and2+1=3.Thisgives:111&.121&.&.1331Wecancontinuetobuildupthetriangleinthiswaytowritedownasmanyrowsaswewish.TheKeyPointbelowshowsthe rstsixrowsofPascal'striangle. KeyPointPascal'striangle11112113311464115101051...... Exercise11.Generatetheseventh,eighth,andninthrowsofPascal'striangle.3.UsingPascal'striangletoexpandabinomialexpressionWewillnowseehowusefulthetrianglecanbewhenwewanttoexpandabinomialexpression.Considerthebinomialexpressiona+b,andsupposewewishto nd(a+b)2.Weknowthat(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2Thatis,(a+b)2=1a2+2ab+1b2Observethefollowinginthe nalresult: www.mathcentre.ac.uk3c\rmathcentre2009 1.Aswemovethrougheachtermfromlefttoright,thepowerofadecreasesfrom2downtozero.2.Thepowerofbincreasesfromzeroupto2.3.Thecoecientsofeachterm,(1,2,1),arethenumberswhichappearintherowofPascal'strianglebeginning1,2.4.Theterm2abarisesfromcontributionsof1aband1ba,i.e.1ab+1ba=2ab.Thisisthelinkwiththewaythe2inPascal'striangleisgenerated;i.e.byadding1and1inthepreviousrow.Ifwewanttoexpand(a+b)3weselectthecoecientsfromtherowofthetrianglebeginning1,3:theseare1,3,3,1.Wecanimmediatelywritedowntheexpansionbyrememberingthatforeachnewtermwedecreasethepowerofa,thistimestartingwith3,andincreasethepowerofb.So(a+b)3=1a3+3a2b+3ab2+1b3whichwewouldnormallywriteasjust(a+b)3=a3+3a2b+3ab2+b3Thinkingof(a+b)3as(a+b)(a2+2ab+b2)=a3+2a2b+ab2+ba2+2ab2+b3=a3+3a2b+3ab2+b3wenotethattheterm3ab2,forexample,arisesfromthetwotermsab2and2ab2;againthisisthelinkwiththeway3isgeneratedinPascal'striangle-byaddingthe1and2inthepreviousrow.ExampleSupposewewishto nd(a+b)4.To ndthisweusetherowbeginning1,4,andcanimmediatelywritedowntheexpansion.(a+b)4=a4+4a3b+6a2b2+4ab3+b4 Wecanapplythesameproceduretoexpandanybinomialexpression,evenwhenthequantitiesaandbaremorecomplicated.Considerthefollowingexamples.ExampleSupposewewanttoexpand(2x+y)3.WepickthecoecientsintheexpansionfromtherelevantrowofPascal'striangle:(1,3,3,1).Aswemovethroughthetermsintheexpansionfromlefttorightweremembertodecreasethepowerof2xandincreasethepowerofy.So,(2x+y)3=1(2x)3+3(2x)2y+3(2x)1y2+1y3=8x3+12x2y+6xy2+y3ExampleSupposewewanttoexpand(1+p)4. www.mathcentre.ac.uk4c\rmathcentre2009 Wepickthecoecientsintheexpansionfromtherowofthetrianglebeginning1,4;thatis(1,4,6,4,1).Aswemovethroughthetermsintheexpansionfromlefttorightweremembertoincreasethepowerofp.Thisexampleissimplerthanthepreviousonebecausethe rstterminbracketsis1,and1toanypowerisstill1.So,(1+p)4=1(1)4+4(1)3p+6(1)2p2+4(1)p3+1p4=1+4p+6p2+4p3+p4: Eitherorbothofthetermsinthebinomialexpressioncanbenegative.Whenraisinganegativenumbertoanevenpowertheresultispositive.Whenraisinganegativenumbertoanoddpowertheresultisnegative.Considerthefollowingexample.ExampleExpand(3a2b)5.WepickthecoecientsintheexpansionfromtherowofPascal'strianglebeginning1,5;thatis1,5,10,10,5,1.Powersof3adecreasefrom5aswemovelefttoright.Powersof2bincrease.(3a2b)5=1(3a)5+5(3a)4(2b)+10(3a)3(2b)2+10(3a)2(2b)3+5(3a)(2b)4+1(2b)5=243a5810a4b+1080a3b2720a2b3+240ab432b5 Eitherorbothofthetermscouldbefractions.ExampleExpand1+2 x3.WepickthecoecientsintheexpansionfromtherowofPascal'striangle(1,3,3,1).Powersof2 xincreaseaswemovelefttoright.Anypowerof1isstill1.1+2 x3=1(1)3+3(1)22 x+3(1)12 x2+12 x3=1+6 x+12 x2+8 x3Exercises2UsePascal'striangletoexpandthefollowingbinomialexpressions:1.(1+3x)22.(2+x)33.(1x)34.(15x)55.(x+6)36.(ab)77.1+3 a48.x1 x6. www.mathcentre.ac.uk5c\rmathcentre2009 4.ThebinomialtheoremIfwewantedtoexpandabinomialexpressionwithalargepower,e.g.(1+x)32,useofPascal'strianglewouldnotberecommendedbecauseoftheneedtogeneratealargenumberofrowsofthetriangle.Analternativemethodistousethebinomialtheorem.Thetheoremenablesustoexpand(a+b)ninincreasingpowersofbanddecreasingpowersofa.Wewilllookatexpandingexpressionsoftheform(a+b)2,(a+b)3,...,(a+b)32,...,thatiswhenthepowerisapositivewholenumber.Undercertainconditionsthetheoremcanbeusedwhennisnegativeorfractionalandthisisusefulinmoreadvancedapplications,buttheseconditionswillnotbestudiedhere. KeyPointThebinomialtheorem:Whennisapositivewholenumber(a+b)n=an+nan1b+n(n1) 2!an2b2+n(n1)(n2) 3!an3b3+n(n1)(n2)(n3) 4!an4b4+:::+bn Notethatthisisa niteseries(thatis,itstopsaftera nitenumberofterms)andthelasttermisbn.Asimplerformofthetheoremisoftenquotedbytakingthespecialcaseinwhicha=1andb=x.Itisstraightforwardtoverifythatthetheorembecomes: KeyPointThebinomialtheorem:Whennisapositivewholenumber(1+x)n=1+nx+n(n1) 2!x2+n(n1)(n2) 3!x3+n(n1)(n2)(n3) 4!x4+:::+xn www.mathcentre.ac.uk6c\rmathcentre2009 ExampleWeshallapplythebinomialtheoremtoexpand(1+x)2.Weusethetheoremwithn=2andstopwhenwehavewrittendowntheterminx2.(1+x)2=1+2x+(2)(21) 2!x2=1+2x+x2whichisthefamiliarandwell-knownresult.ExampleWenowapplythebinomialtheoremtoexpand(1+x)3.Weusethetheoremwithn=3.(1+x)3=1+3x+(3)(31) 2!x2+(3)(31)(32) 3!x3=1+3x+3x2+x3ExampleSupposewewishtoapplythebinomialtheoremto ndthe rstthreetermsinascendingpowersofxof(1+x)32.Weusethetheoremwithn=32andjustwritedownthe rstthreeterms.(1+x)32=1+32x+(32)(321) 2!x2=1+32x+496x2+::: Withsomeingenuitywecanusethetheoremtoexpandotherbinomialexpressions.ExampleSupposewewishto ndthe rstfourtermsintheexpansionof(1+1 3y)10.Weusethetheorem,replacingxwithy 3andlettingn=10.Thisgives(1+1 3y)10=1+10y 3+(10)(101) 2!y 32+(10)(101)(102) 3!y 33+:::=1+10 3y+5y2+40 9y3+:::ExampleSupposewewishto ndthe rstthreetermsintheexpansionof(35z)14.Weshallapplythebinomialtheoremintheoriginalformgivenonpage6witha=3,b=5zandn=14.(35z)14=314+14(313)(5z)+(14)(13) 2!(312)(5z)2=314(313)70z+(312)2275z2=314170z 3+2275 9z2::: www.mathcentre.ac.uk7c\rmathcentre2009 Exercises31.Usethebinomialtheoremtoexpand(a)(1+x)4and(b)(1+x)5.2.Usethebinomialtheoremtoexpand(1+2x)3.3.Usethebinomialtheoremtoexpand(13x)4.4.Usethebinomialtheoremto ndthe rstthreetermsinascendingpowersofxof(1x 2)8.5.Findthecoecientofx5intheexpansionof(1+4x)9.6.Intheexpansionof(1x)8 ndthecoecientofx7.7.Findthe rstfourtermsintheexpansionof2+x 312.AnswersExercise11.Seventhrow:1,6,15,20,15,6,1.Eighthrow:1,7,21,35,35,21,7,1.Ninthrow:1,8,28,56,70,56,28,8,1.Exercise21.1+6x+9x22.8+12x+6x2+x33.13x+3x2x34.125x+250x21250x3+3125x43125x55.x3+18x2+108x+2166.a77a6b+21a5b235a4b3+35a3b421a2b5+7ab6b7.7.1+12 a+54 a2+108 a3+81 a48.x66x4+15x220+15 x26 x4+1 x6Exercise31.(a)1+4x+6x2+4x3+x4(b)1+5x+10x2+10x3+5x4+x5.2.1+6x+12x2+8x3.3.112x+54x2108x3+81x4.4.14x+7x2:::.5.129024.6.8.7.4096+8192x+22528 3x2+112640 27x3::: www.mathcentre.ac.uk8c\rmathcentre2009

Shom More....