Presentation on theme: "Pascals triangle and the binomial theorem mcTYpascal"— Presentation transcript
Pascal'striangleandthebinomialtheorem
mc-TY-pascal-2009-1.1
Abinomialexpressionisthesum,ordierence,oftwoterms.Forexample,x+1;3x+2y;a bareallbinomialexpressions.Ifwewanttoraiseabinomialexpressiontoapowerhigherthan2(forexampleifwewanttond(x+1)7)itisverycumbersometodothisbyrepeatedlymultiplyingx+1byitself.Inthisunityouwilllearnhowatriangularpatternofnumbers,knownasPascal'striangle,canbeusedtoobtaintherequiredresultveryquickly.Inordertomasterthetechniquesexplainedhereitisvitalthatyouundertakeplentyofpracticeexercisessothattheybecomesecondnature.Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto:generatePascal'striangleexpandabinomialexpressionusingPascal'striangleusethebinomialtheoremtoexpandabinomialexpressionContents1.Introduction22.Pascal'striangle23.UsingPascal'striangletoexpandabinomialexpression34.Thebinomialtheorem6
www.mathcentre.ac.uk1c\rmathcentre2009
1.IntroductionAbinomialexpressionisthesum,ordierence,oftwoterms.Forexample,x+1;3x+2y;a bareallbinomialexpressions.Youwillbefamiliaralreadywiththeneedtoexpandbracketswhensquaringsuchquantities.Youwillknow,forexample,that(x+1)2=(x+1)(x+1)=x2+x+x+1=x2+2x+1Ifwewanttoraiseabinomialexpressiontoapowerhigherthan2(forexampleifwewanttond(x+1)7)itisverycumbersometodothisbyrepeatedlymultiplyingx+1byitself.Inthisunityouwilllearnhowatriangularpatternofnumbers,knownasPascal'striangle,canbeusedtoobtaintherequiredresultveryquickly.2.Pascal'striangleWestarttogeneratePascal'strianglebywritingdownthenumber1.Thenwewriteanewrowwiththenumber1twice:111Wethengeneratenewrowstobuildatriangleofnumbers.Eachnewrowmustbeginandendwitha1:1111*11**1Theremainingnumbersineachrowarecalculatedbyaddingtogetherthetwonumbersintherowabovewhichlieabove-leftandabove-right.So,addingthetwo1'sinthesecondrowgives2,andthisnumbergoesinthevacantspaceinthethirdrow:111&.1211**1
www.mathcentre.ac.uk2c\rmathcentre2009
Thetwovacantspacesinthefourthrowareeachfoundbyaddingtogetherthetwonumbersinthethirdrowwhichlieabove-leftandabove-right:1+2=3,and2+1=3.Thisgives:111&.121&.&.1331Wecancontinuetobuildupthetriangleinthiswaytowritedownasmanyrowsaswewish.TheKeyPointbelowshowstherstsixrowsofPascal'striangle.
KeyPointPascal'striangle11112113311464115101051......
Exercise11.Generatetheseventh,eighth,andninthrowsofPascal'striangle.3.UsingPascal'striangletoexpandabinomialexpressionWewillnowseehowusefulthetrianglecanbewhenwewanttoexpandabinomialexpression.Considerthebinomialexpressiona+b,andsupposewewishtond(a+b)2.Weknowthat(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2Thatis,(a+b)2=1a2+2ab+1b2Observethefollowinginthenalresult:
www.mathcentre.ac.uk3c\rmathcentre2009
1.Aswemovethrougheachtermfromlefttoright,thepowerofadecreasesfrom2downtozero.2.Thepowerofbincreasesfromzeroupto2.3.Thecoecientsofeachterm,(1,2,1),arethenumberswhichappearintherowofPascal'strianglebeginning1,2.4.Theterm2abarisesfromcontributionsof1aband1ba,i.e.1ab+1ba=2ab.Thisisthelinkwiththewaythe2inPascal'striangleisgenerated;i.e.byadding1and1inthepreviousrow.Ifwewanttoexpand(a+b)3weselectthecoecientsfromtherowofthetrianglebeginning1,3:theseare1,3,3,1.Wecanimmediatelywritedowntheexpansionbyrememberingthatforeachnewtermwedecreasethepowerofa,thistimestartingwith3,andincreasethepowerofb.So(a+b)3=1a3+3a2b+3ab2+1b3whichwewouldnormallywriteasjust(a+b)3=a3+3a2b+3ab2+b3Thinkingof(a+b)3as(a+b)(a2+2ab+b2)=a3+2a2b+ab2+ba2+2ab2+b3=a3+3a2b+3ab2+b3wenotethattheterm3ab2,forexample,arisesfromthetwotermsab2and2ab2;againthisisthelinkwiththeway3isgeneratedinPascal'striangle-byaddingthe1and2inthepreviousrow.ExampleSupposewewishtond(a+b)4.Tondthisweusetherowbeginning1,4,andcanimmediatelywritedowntheexpansion.(a+b)4=a4+4a3b+6a2b2+4ab3+b4
Wecanapplythesameproceduretoexpandanybinomialexpression,evenwhenthequantitiesaandbaremorecomplicated.Considerthefollowingexamples.ExampleSupposewewanttoexpand(2x+y)3.WepickthecoecientsintheexpansionfromtherelevantrowofPascal'striangle:(1,3,3,1).Aswemovethroughthetermsintheexpansionfromlefttorightweremembertodecreasethepowerof2xandincreasethepowerofy.So,(2x+y)3=1(2x)3+3(2x)2y+3(2x)1y2+1y3=8x3+12x2y+6xy2+y3ExampleSupposewewanttoexpand(1+p)4.
www.mathcentre.ac.uk4c\rmathcentre2009
Wepickthecoecientsintheexpansionfromtherowofthetrianglebeginning1,4;thatis(1,4,6,4,1).Aswemovethroughthetermsintheexpansionfromlefttorightweremembertoincreasethepowerofp.Thisexampleissimplerthanthepreviousonebecausetherstterminbracketsis1,and1toanypowerisstill1.So,(1+p)4=1(1)4+4(1)3p+6(1)2p2+4(1)p3+1p4=1+4p+6p2+4p3+p4:
Eitherorbothofthetermsinthebinomialexpressioncanbenegative.Whenraisinganegativenumbertoanevenpowertheresultispositive.Whenraisinganegativenumbertoanoddpowertheresultisnegative.Considerthefollowingexample.ExampleExpand(3a 2b)5.WepickthecoecientsintheexpansionfromtherowofPascal'strianglebeginning1,5;thatis1,5,10,10,5,1.Powersof3adecreasefrom5aswemovelefttoright.Powersof 2bincrease.(3a 2b)5=1(3a)5+5(3a)4( 2b)+10(3a)3( 2b)2+10(3a)2( 2b)3+5(3a)( 2b)4+1( 2b)5=243a5 810a4b+1080a3b2 720a2b3+240ab4 32b5
Eitherorbothofthetermscouldbefractions.ExampleExpand1+2
x3.WepickthecoecientsintheexpansionfromtherowofPascal'striangle(1,3,3,1).Powersof2
xincreaseaswemovelefttoright.Anypowerof1isstill1.1+2
x3=1(1)3+3(1)22
x+3(1)12
x2+12
x3=1+6
x+12
x2+8
x3Exercises2UsePascal'striangletoexpandthefollowingbinomialexpressions:1.(1+3x)22.(2+x)33.(1 x)34.(1 5x)55.(x+6)36.(a b)77.1+3
a48.x 1
x6.
www.mathcentre.ac.uk5c\rmathcentre2009
4.ThebinomialtheoremIfwewantedtoexpandabinomialexpressionwithalargepower,e.g.(1+x)32,useofPascal'strianglewouldnotberecommendedbecauseoftheneedtogeneratealargenumberofrowsofthetriangle.Analternativemethodistousethebinomialtheorem.Thetheoremenablesustoexpand(a+b)ninincreasingpowersofbanddecreasingpowersofa.Wewilllookatexpandingexpressionsoftheform(a+b)2,(a+b)3,...,(a+b)32,...,thatiswhenthepowerisapositivewholenumber.Undercertainconditionsthetheoremcanbeusedwhennisnegativeorfractionalandthisisusefulinmoreadvancedapplications,buttheseconditionswillnotbestudiedhere.
KeyPointThebinomialtheorem:Whennisapositivewholenumber(a+b)n=an+nan 1b+n(n 1)
2!an 2b2+n(n 1)(n 2)
3!an 3b3+n(n 1)(n 2)(n 3)
4!an 4b4+:::+bn
Notethatthisisaniteseries(thatis,itstopsafteranitenumberofterms)andthelasttermisbn.Asimplerformofthetheoremisoftenquotedbytakingthespecialcaseinwhicha=1andb=x.Itisstraightforwardtoverifythatthetheorembecomes:
KeyPointThebinomialtheorem:Whennisapositivewholenumber(1+x)n=1+nx+n(n 1)
2!x2+n(n 1)(n 2)
3!x3+n(n 1)(n 2)(n 3)
4!x4+:::+xn
www.mathcentre.ac.uk6c\rmathcentre2009
ExampleWeshallapplythebinomialtheoremtoexpand(1+x)2.Weusethetheoremwithn=2andstopwhenwehavewrittendowntheterminx2.(1+x)2=1+2x+(2)(2 1)
2!x2=1+2x+x2whichisthefamiliarandwell-knownresult.ExampleWenowapplythebinomialtheoremtoexpand(1+x)3.Weusethetheoremwithn=3.(1+x)3=1+3x+(3)(3 1)
2!x2+(3)(3 1)(3 2)
3!x3=1+3x+3x2+x3ExampleSupposewewishtoapplythebinomialtheoremtondtherstthreetermsinascendingpowersofxof(1+x)32.Weusethetheoremwithn=32andjustwritedowntherstthreeterms.(1+x)32=1+32x+(32)(32 1)
2!x2=1+32x+496x2+:::
Withsomeingenuitywecanusethetheoremtoexpandotherbinomialexpressions.ExampleSupposewewishtondtherstfourtermsintheexpansionof(1+1
3y)10.Weusethetheorem,replacingxwithy
3andlettingn=10.Thisgives(1+1
3y)10=1+10y
3+(10)(10 1)
2!y
32+(10)(10 1)(10 2)
3!y
33+:::=1+10
3y+5y2+40
9y3+:::ExampleSupposewewishtondtherstthreetermsintheexpansionof(3 5z)14.Weshallapplythebinomialtheoremintheoriginalformgivenonpage6witha=3,b= 5zandn=14.(3 5z)14=314+14(313)( 5z)+(14)(13)
2!(312)( 5z)2=314 (313)70z+(312)2275z2=3141 70z
3+2275
9z2 :::
www.mathcentre.ac.uk7c\rmathcentre2009
Exercises31.Usethebinomialtheoremtoexpand(a)(1+x)4and(b)(1+x)5.2.Usethebinomialtheoremtoexpand(1+2x)3.3.Usethebinomialtheoremtoexpand(1 3x)4.4.Usethebinomialtheoremtondtherstthreetermsinascendingpowersofxof(1 x
2)8.5.Findthecoecientofx5intheexpansionof(1+4x)9.6.Intheexpansionof(1 x)8ndthecoecientofx7.7.Findtherstfourtermsintheexpansionof 2+x
312.AnswersExercise11.Seventhrow:1,6,15,20,15,6,1.Eighthrow:1,7,21,35,35,21,7,1.Ninthrow:1,8,28,56,70,56,28,8,1.Exercise21.1+6x+9x22.8+12x+6x2+x33.1 3x+3x2 x34.1 25x+250x2 1250x3+3125x4 3125x55.x3+18x2+108x+2166.a7 7a6b+21a5b2 35a4b3+35a3b4 21a2b5+7ab6 b7.7.1+12
a+54
a2+108
a3+81
a48.x6 6x4+15x2 20+15
x2 6
x4+1
x6Exercise31.(a)1+4x+6x2+4x3+x4(b)1+5x+10x2+10x3+5x4+x5.2.1+6x+12x2+8x3.3.1 12x+54x2 108x3+81x4.4.1 4x+7x2:::.5.129024.6. 8.7.4096+8192x+22528
3x2+112640
27x3:::
www.mathcentre.ac.uk8c\rmathcentre2009