PDF-ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations
Author : tatiana-dople | Published Date : 2014-12-18
A polynomial in of degree where is an integer is an expression of the form 1 where 0 a a are constants When is set equal to zero the resulting equation 0 2 is called
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "ROOTS OF POLYNOMIAL EQUATIONS In this un..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations: Transcript
A polynomial in of degree where is an integer is an expression of the form 1 where 0 a a are constants When is set equal to zero the resulting equation 0 2 is called a polynomial equation of degree In this unit we are concerned with the number. Neeraj. . Kayal. Microsoft Research. A dream. Conjecture #1:. The . determinantal. complexity of the permanent is . superpolynomial. Conjecture #2:. The arithmetic complexity of matrix multiplication is . pt. ). Default shape. Dark blue outline, 3 . pt. weight. Light blue fill. Black text, centered. Verdana 24 . pt. Variation. Variation. Variation. (not exhaustive). Objective: . You will be able to solve equations involving . I. Standard Form of a quadratic. In form of . Lead coefficient (a) is positive.. . . . Examples. . II. Discriminant. Tells us about nature . of. roots of a quadratic. 4 cases: 1. If D>0, then 2 real roots.. Synthesis 2. October . 8, . 2015. Mark . Plecnik. Planar Kinematics With Complex Numbers. θ. . . (. a. x. + . ia. y. ). + . (. b. x. + . ib. y. ). = . (. a. x. +b. x. ) + . i. (. a. y. +b. y. A). B). SYNTHETIC DIVISION:. STEP #1. : . Write the Polynomial in DESCENDING ORDER by degree and write any ZERO coefficients for missing degree terms in order. STEP #2. : . Solve the Binomial Divisor = Zero. Objectives: Identify Polynomial functions. Determine end behavior recognize characteristics of polynomial functions. Use factoring to find zeros of polynomial functions.. Polynomials of degree 2 or higher have graphs that are smooth and continuous. By smooth we mean the graphs have rounded curves with no sharp corners. By continuous we mean the graphs have no breaks and can be drawn without lifting your pencil from the rectangular coordinate system.. Unit 1. somat. , . corp. = body. hem(o)(a)(at) = blood. cephal. (o), cap = head, brain. cardi. (o) = heart. arthr. (o) = joint. derm. (at) = skin. somat. , . corp. Somatology. – the psychological and anatomical study of the body. Algebra 2. Chapter 5. This Slideshow was developed to accompany the textbook. Larson Algebra 2. By Larson. , R., Boswell, L., . Kanold. , T. D., & Stiff, L. . 2011 . Holt . McDougal. Some examples and diagrams are taken from the textbook.. Quadratic Function. A . quadratic function . is defined by a quadratic or second-degree polynomial.. Standard Form. , . where . a. . ≠ 0. .. Vertex Form. , where a. . ≠ 0.. . Vertex and Axis of Symmetry. Taylor Johnson. (Taylor.Johnson@kctcs.edu). Elizabethtown Community . & . Technical College. Tools for Searching for Zeros . (1) Remainder Theorem. (2) Factor Theorem. (3) Intermediate Value Theorem. . A Reminiscence 1980-1988. Alexander Morgan. Part of the Prehistory of Applied Algebraic Geometry. A Series of (Fortunate) Unlikely Events. Intellectual epidemiology: . Idea originates with “case zero”. Section 4.5 beginning on page 190. Solving By Factoring. We already know how the zero product property allows us to solve quadratic equations, this property also allows us to solve factored polynomial equations [we learned how to factor polynomial expressions in the previous section].. , 2009. Subdivision methods for solving polynomial . equations. 1. abstract. The purpose of the talk today is to present . a new algorithm. . for . solving . a system of . polynomials. in a domain . Standard 15. Graph and analyze polynomial and radical functions to determine:. Domain and range. X and y intercepts. Maximum and minimum values. Intervals of increasing and decreasing. End behavior. With the function: f(x) = .
Download Document
Here is the link to download the presentation.
"ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents