/
Weak Lensing Tomography Weak Lensing Tomography

Weak Lensing Tomography - PowerPoint Presentation

tawny-fly
tawny-fly . @tawny-fly
Follow
405 views
Uploaded On 2016-05-22

Weak Lensing Tomography - PPT Presentation

Sarah Bridle University College London 3d vs 2d tomography NonGaussian gt higher order statistics Low redshift gt dark energy versus Weak Lensing Tomography In principle perfect zs ID: 330610

increase 1999 lensing amp 1999 increase amp lensing astro jain taylor andy distance tomography shear dependence takada spectrum power

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Weak Lensing Tomography" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Weak Lensing Tomography

Sarah Bridle

University College LondonSlide2

3d vs 2d (tomography)

Non-Gaussian -> higher order statistics

Low redshift -> dark energy

versusSlide3

Weak Lensing Tomography

In principle (perfect zs)

Hu 1999

astro-ph/9904153

Photometric redshifts Csabai et al. astro-ph/0211080

Effect of photometric redshift uncertainties

Ma, Hu & Huterer

astro-ph/0506614

Intrinsic alignments

Shear calibrationSlide4

1. In principle (perfect zs)

Qualitative overview

Lensing efficiency and power spectrum

Dependence on cosmologyPower spectrum uncertainties

Cosmological parameter constraintsSlide5

1. In principle (perfect zs)

Core reference

Hu 1999 astro-ph/9904153

See also Refregier et al astro-ph/0304419Takada & Jain astro-ph/0310125Slide6

Cosmic shear two point tomography

Slide7

Cosmic shear two point tomography

Slide8

Cosmic shear two point tomography

qSlide9

Cosmic shear two point tomography

qSlide10

(Hu 1999)Slide11

(Hu 1999)Slide12

Lensing efficiency

(Hu 1999)

Equivalently:

g

i

(z

l

) =

z

l

n

i

(z

s

) D

l

Dls / Ds dzsi.e. g is just the weighted Dl Dls / DsSlide13

Can you sketch g1(z) and g

2

(z)?

(Hu 1999)

g

i

(z) =

z

s

n

i

(z

s

) D

l

D

ls / Ds dzsSlide14

Lensing efficiency for source plane?Slide15
Slide16

(Hu 1999)Slide17

Sensitivity in each z binSlide18

NOTSlide19

(Hu 1999)

Why is g for bin 2 higher?

More structure along line of sight

Distances are larger

g

i

(z

d

) =

z

s

1

n

i

(z

s

) D

d Dds / Ds dzsSlide20
Slide21

*

*Slide22

Lensing power spectrum

(Hu 1999)Slide23

Lensing power spectrum

Equivalently:

P

ii(l) = ∫

g

i

(z

l

)

2

P(l/D

l

,z) dD

l

/D

l2i.e. matter power spectrum at each z, weighted by square of lensing efficiency(Hu 1999)Slide24

(Hu 1999)Slide25

Measurement uncertainties

<

2int>1/2

= rms shear (intrinsic + photon noise)ni = number of galaxies per steradian in bin i

(Hu 1999)

Cosmic

Variance

Observational

noiseSlide26

(Hu 1999)Slide27

Sensitivity in each z binSlide28

NOTSlide29

(Hu 1999)Slide30

Dependence on cosmology

Refregier et al SNAP3

?

?

A.

m

= 0.35 w=-1

B.

m

= 0.30 w=-0.7Slide31

Approximate dependence

Increase

8 →

A. P

B. P

Increase z

s

A. P

↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE (K=0) → A. P ↓ B. P

 ↑ Increase w → A. P ↓ B. P ↑

Huterer et alSlide32

Effect of increasing w on P

Distance to z

A. Decreases B. IncreasesSlide33

Perlmutter et al.1998

Fainter

Further away

Decelerating

Accelerating

m

=1, no DE

(

m

=1,

DE

=0) == (

m

= 0.3,

DE = 0.7, wDE=0)Slide34

Perlmutter et al.1998

EdS OR w=0

w=-1

Fainter, further

Brighter, closerSlide35

Effect of increasing w on P

Distance to z

A. Decreases B. IncreasesWhen decrease distance, lensing effect decreasesDark energy dominates

A. Earlier B. LaterSlide36
Slide37
Slide38

Effect of increasing w on P

Distance to z

A. Decreases B. IncreasesWhen decrease distance, lensing decreasesDark energy dominates

A. Earlier B. LaterGrowth of structureA. Suppressed B. Increased

Lensing A. Increases B. Decreases

Net effects:

Partial cancellation <-> decreased sensitivity

Distance winsSlide39

Approximate dependence

Increase

8 →

A. P

B. P

Increase z

s

A. P

↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE (K=0) → A. P ↓ B. P

 ↑ Increase w → A. P ↓ B. P ↑

Huterer et alSlide40

Approximate dependence

Increase

8 →

A. P

B. P

Increase z

s

A. P

↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE (K=0) → A. P ↓ B. P

 ↑ Increase w → A. P ↓ B. P ↑

Huterer et al

Note

modulusSlide41

Which is more important?Distance or growth?

Simpson & BridleSlide42

Dependence on cosmology

Refregier et al SNAP3

?

?

A.

m

= 0.35 w=-1

B.

m

= 0.30 w=-0.7Slide43

(Hu 1999)Slide44

(Hu 1999)

See Heavens astro-ph/0304151 for full 3D treatment (~infinite # bins)Slide45

(Hu 1999)Slide46

Parameter estimation for z~2

(Hu 1999)Slide47

Predict the direction of degeneracy in w versus

m planeSlide48

Refregier et al SNAP3Slide49

(Hu 1999)Slide50

Takada & JainSlide51

(Hu 1999)Slide52

Covariance matrix

P

12 is correlated with P11 and P

22

(ignoring trispectrum contributions)

Takada & JainSlide53

Takada & JainSlide54

How many redshift bins to use?

Ma, Hu & Huterer

5 is enough

Modified fromSlide55

Higher order statisticsSlide56

Takada & JainSlide57

Takada & JainSlide58

Geometric information

Jain & Taylor; Kitching et al.

Slide stolen from Tom Kitching

www.astro.dur.ac.uk/Cosmology/SISCO/edin_talks/Kitching.

PPT Slide59

Slide stolen from presentation by Andy Taylor

www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

Slide60

Slide stolen from presentation by Andy Taylor

www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

Slide61

Slide stolen from presentation by Andy Taylor

www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

Slide62

Slide stolen from presentation by Andy Taylor

www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt

Slide63

Some additional tomographic methods

Cross-correlation cosmography

Bernstein & Jain astro-ph/0309332

Galaxy-lensing cross correlationHu & Jain astro-ph/0312395

Reconstruction of distance and growthSong; Knox & Song