PPT-Deep Residual Learning for Image Recognition
Author : trish-goza | Published Date : 2018-10-23
Presenter Jingyun Ning CVPR 2016 Best Paper Award Introduction Deep Residual Networks ResNets A simple and clean framework of training very deep nets Stateoftheart
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Deep Residual Learning for Image Recogni..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Deep Residual Learning for Image Recognition: Transcript
Presenter Jingyun Ning CVPR 2016 Best Paper Award Introduction Deep Residual Networks ResNets A simple and clean framework of training very deep nets Stateoftheart performance for. Information Processing & Artificial Intelligence. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 4, 2013 (Day 3). . Image by kirkh.deviantart.com. Aditya. . Khosla. and Joseph Lim. Today’s class. Part 1: Introduction to deep learning. What is deep learning?. Why deep learning?. Some common deep learning algorithms. Carey . Nachenberg. Deep Learning for Dummies (Like me) – Carey . Nachenberg. (Like me). The Goal of this Talk?. Deep Learning for Dummies (Like me) – Carey . Nachenberg. 2. To provide you with . Presenter: . Yanming. . Guo. Adviser: Dr. Michael S. Lew. Deep learning. Human. Computer. 1:4. Human . v.s. . Computer. Deep learning. Human. Computer. 1:4. Human . v.s. . Computer. Deep Learning. Why better?. Recognition. Author : . Kaiming. He, . Xiangyu. Zhang, . Shaoqing. Ren, and Jian Sun. (accepted to CVPR 2016). Presenter : . Hyeongseok. Son. The deeper, the better. The deeper network can cover more complex problems. The Future of Real-Time Rendering?. 1. Deep Learning is Changing the Way We Do Graphics. [Chaitanya17]. [Dahm17]. [Laine17]. [Holden17]. [Karras17]. [Nalbach17]. Video. “. Audio-Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion”. CS 501:CS Seminar. Min Xian. Assistant Professor. Department of Computer Science. University of Idaho. Image from NVIDIA. Researchers:. Geoff Hinton. Yann . LeCun. Andrew Ng. Yoshua. . Bengio. …. New-Generation Models & Methodology for Advancing . AI & SIP. Li Deng . Microsoft Research, Redmond, . USA. Tianjin University, July 2-5, 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Deep Learning for Expression Recognition in Image Sequences Daniel Natanael García Zapata Tutors: Dr. Sergio Escalera Dr. Gholamreza Anbarjafari April 27 2018 Introduction and Goals Introduction Dennis Hamester et al., “Face ExpressionRecognition with a 2-Channel ConvolutionalNeural Network”, International Joint Conference on Neural Networks (IJCNN), 2015. New-Generation Models & Methodology for Advancing . Speech Technology . and Information Processing. Li Deng . Microsoft Research, Redmond, . USA. CCF, . Beijing. , July . 8. , 2013. (including joint work with colleagues at MSR, U of Toronto, etc.) . Commercially . available seizure detection systems suffer from unacceptably high false alarm rates. . Deep . learning algorithms, like Convolutional Neural Networks (CNNs), have not previously been effective due to the lack of big data resources. . Topics: 1. st. lecture wrap-up, difficulty training deep networks,. image classification problem, using convolutions,. tricks to train deep networks . . Resources: http://www.cs.utah.edu/~rajeev/cs7960/notes/ . New-Generation Models & Methodology for Advancing Speech Technology. Li Deng . Microsoft Research, Redmond, USA. Keynote at . Odyssey Speaker/Language Recognition Workshop. Singapore, June. 26, 2012. Subset of the publicly available TUH EEG Corpus (. www.isip.piconepress.com/projects/tuh_eeg). .. Evaluation Data:. 50 patients, 239 sessions, 1015 files. 171 hours of data including 16 hours of seizures..
Download Document
Here is the link to download the presentation.
"Deep Residual Learning for Image Recognition"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents