PPT-WORKSHOP Data Management Concepts and Data Profiling

Author : yoshiko-marsland | Published Date : 2018-09-19

Getting in touch with the STUDENT EXPERIENCE Workshop Agenda Master Data Management Business Intelligence BPM amp Analytics Data Integration Enterprise Data Warehouse

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "WORKSHOP Data Management Concepts and Da..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

WORKSHOP Data Management Concepts and Data Profiling: Transcript


Getting in touch with the STUDENT EXPERIENCE Workshop Agenda Master Data Management Business Intelligence BPM amp Analytics Data Integration Enterprise Data Warehouse Data Governance Analytics vs BI. Workshop Idea13. Joerg Huber. 12 November 2013. SIF3 Workshop Idea2013: SIF 3.0 Concepts. 2. Overview . Terms and Concepts of SIF 3.0. REST (what about SOAP), XML, JSON. Direct and Brokered Zones. Immediate and Delayed Responses. 15,16th October 2014 - Valenzano. Workshop and Technical Meeting . 15,16th October 2014 – Valenzano (Italy) . Ing. Massimiliano Serafino . InnovaPuglia. Workshop and Technical Meeting. 15,16th October 2014 - Valenzano. Rohit Agarwal. OUTLINE. Introduction. Types of Profiling. When should Data Profiling be done?. General Model. Methodology. Conclusion. References. Introduction. Data as we know is a piece of information, this piece of information is very important for the large organizations and companies, just like money and property are important assets for a human likewise data is an asset to any successful organization.. Luwero. , . Uganda. 26-27 March 2015. Objectives. To share key findings from the evaluation with the DHMTs . To identify any gaps or possible errors in the key findings from the evaluation . To discuss issues with the quantitative data collected in the evaluation . In 2012 : 18 714 vertical profiles . from. 26 . platforms. Workshop objectives. Task 1: Complete and validate the glider’s data management user’s manual. Assigned . to : Thierry ?. Workshop objectives. Metadata:. Technical . Considerations. & Approach. Ray Plante. NIST. 4/14/16. NMI Registry Workshop BIPM, Paris. 1. …don’t worry ;-). or How we concentrate on concepts. Creating & Curating Records. On behalf of. Research Data Management teams. Universities of Leeds, Sheffield and York Libraries. Running order. Scene setting. Academic perspective on data management. Exercise – writing your own data management plan. . InfoSec concepts & . components. . . Making . InfoSec . data actionable with GRC. Examples of . InfoSec . strategy through GRC. Today’s Agenda. . GRC concepts & components. ESIP Summer Meeting, Durham. July 19, 2016. Shelley Stall. AGU Assistant Director, . Enterprise Data Management. sstall@agu.org. 2. AGU’s position statement on data affirms that . “Earth and space sciences data are a world heritage. VIVO et al.. Several slides are from a presentation to OVPR in 2010.. Chin Hua Kong – SLIS. Robert Light - SLIS. Katy Borner – SLIS. I would like to thank Ryan . Cobine. and David Cliff for their input.. Big Data Processing over Hybrid Memories. Chenxi Wang. Huimin Cui. Ting Cao. John . Zigman. Haris Volos. Onur . Mutlu. Fang . Lv. Xiaobing Feng. Guoqing Harry Xu. Big. . Data. . Workloads. MLlib. Current. Cet ouvrage s?adresse 224 tous ceux qui cherchent 224 tirer parti de l?233norme potentiel des 171technologies Big Data187, qu?ils soient data scientists, DSI, chefs de projets ou sp233cialistes m233tier. Le Big Data s?est impos233 comme une innovation majeure pour toutes les entreprises qui cherchent 224 construire un avantage concurrentiel gr226ce 224 l?exploitation de leurs donn233es clients, fournisseurs, produits, processus, machines, etc. Mais quelle solution technique choisir? Quelles comp233tences m233tier d233velopper au sein de la DSI? Ce livre est un guide pour comprendre les enjeux d?un projet Big Data, en appr233hender les concepts sous-jacents (en particulier le Machine Learning) et acqu233rir les comp233tences n233cessaires 224 la mise en place d?un data lab. Il combine la pr233sentation - De notions th233oriques (traitement statistique des donn233es, calcul distribu233...) - Des outils les plus r233pandus (233cosyst232me Hadoop, Storm...) - D?exemples d?applications - D?une organisation typique d?un projet de data science. Cette deuxi232me 233dition est compl233t233e et enrichie par des mises 224 jour sur les r233seaux de neurones et sur le Deep Learning ainsi que sur Spark. Programme. on Population and Housing Censuses: International Standards and Contemporary Technologies, Colombo, Sri Lanka, 8-11 May 2018. Session 13. Management and Monitoring Systems. Meryem Demirci. Dryad Data Repository. Phil Hurvitz. Jenny Muilenburg. CSDE Workshop. 2023-05-24. 1 of 45. NIH Data Management Plans. Phil Hurvitz. Research Scientist. Center for Studies in Demography and Ecology. University of Washington.

Download Document

Here is the link to download the presentation.
"WORKSHOP Data Management Concepts and Data Profiling"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents