/
Curvatures of smooth and discrete surfaces Curvatures of smooth and discrete surfaces

Curvatures of smooth and discrete surfaces - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
400 views
Uploaded On 2017-04-02

Curvatures of smooth and discrete surfaces - PPT Presentation

4JohnMSullivanWithrespecttotheL2innerproducthUViRUpVpdAonvectoreldsthevectormeancurvatureisthenegativegradientoftheareafunctionaloftencalledtherstvariationofareaHrAreaSimilarlythenegat ID: 334156

4JohnM.SullivanWithrespecttotheL2innerproducthU;Vi:=RUpVpdAonvectorelds thevectormeancurvatureisthenegativegradientoftheareafunctional oftencalledtherstvaria-tionofarea:H=rArea.(Similarly thenegat

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Curvatures of smooth and discrete surfac..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2JohnM.SullivanAplanecurveiscompletelydetermined(uptorigidmotion)byits(signed)curva-ture(s)asafunctionofarclengths.Foraspacecurve,however,weneedtolookatthethird-orderinvariants;thesearethetorsionandthederivative0,butthelatterofcoursegivesnonewinformation.Thesearenowacompletesetofinvariants:aspacecurveisdeterminedby(s)and(s).Genericallyspeaking,whilesecond-ordercurvaturessufcetodetermineahyper-surface(ofcodimension1),higher-orderinvariantsareneededforhighercodimension.ForcurvesinEd,forinstance,weneedd�1generalizedcurvatures,oforderupton,tocharacterizetheshape.Letusexaminethecaseofspacecurves E3inmoredetail.Ateverypointp2 wehaveasplittingofthetangentspaceTpE3intothetangentlineTp andthenormalplane.Aframingalong isasmoothchoiceofaunitnormalvectorN1,whichisthencompletedtotheorientedorthonormalframe(T;N1;N2)forE3,whereN2=TN1.Takingthederivativewithrespecttoarclength,wegetaskew-symmetricmatrix(aninnitesimalrotation)describinghowtheframechanges:0@TN1N21A0=0@012�10�kappa2�01A0@TN1N21A:Here,T0(s)=PiNiisthecurvaturevectorof ,whilemeasuresthetwistingofthisframing.IfwechooseN1atabasepointalong anaturalchoiceofframingistheparallelframingorBishopframing[Bis75]denedbythecondition=0.Equivalently,thevectorsNiareparallel-transportedalong fromthebasepoint,usingtheRiemannianconnectioninducedbytheimmersioninE3.Oneshouldnotethatthisisnotnecessarilyaclosedframingalongaclosedloop ;whenwereturntothebasepoint,N1hasbeenrotatedthroughananglecalledthewritheof .Otherframingsarealsooftenuseful.Forinstance,if liesonasurfaceMwithunitnormal,itisnaturaltochooseN1=.ThenN2=:=Tiscalledthecornormalvector,and(T;;)istheDarbouxframe(adaptedto ME3).Thecurvaturevectorof decomposesintopartstangentandnormaltoMasT0=g+n.Here,nmeasuresthenormalcurvatureofMinthedirectionT,andisindependentof ,whileg,thegeodesiccurvatureof inM,isanintrinsicnotion,unchangedifweisometricallydeformtheimmersionofMintospace.Whenthecurvaturevectorof nevervanishes,wecanwriteitasT0=Nwhere�0andNisaunitvector,theprincipalnormal.ThisyieldstheorthonormalFrenetframe(T;N;B),whosetwistingisthetorsionof .ThetotalcurvatureofasmoothcurveisRds.In[Sul06]weinvestigatedanumberofresults:Forclosedcurves,thetotalcurvatureisatleast2(Fenchel)andforknottedspacecurvesthetotalcurvatureisatleast4(F´ary/Milnor).Forplanecurves,wecanconsiderinsteadthesignedcurvature,andndthatRdsisalwaysanintegralmultipleof2.Then(followingMilnor)wedenedthetotalcurvatureofapolygonalcurvesim-plytobethesumoftheturninganglesatthevertices.Thenallthesetheoremsontotal 4JohnM.SullivanWithrespecttotheL2innerproducthU;Vi:=RUpVpdAonvectorelds,thevectormeancurvatureisthenegativegradientoftheareafunctional,oftencalledtherstvaria-tionofarea:H=�rArea.(Similarly,thenegativegradientoflengthforacurveisitscurvaturevectorN.)Justasisthegeometricversionofsecondderivativeforcurves,meancurvatureisthegeometricversionoftheLaplacian.Indeed,ifasurfaceMiswrittenlocallyasthegraphofaheightfunctionfoveritstangentplaneTpMthenH(p)=f.Alternatively,wecanwriteH=rM=Mx,wherexisthepositionvectorinR3andMisBeltrami'ssurfaceLaplacian.Ifweowacurveorsurfacetoreduceitslengthorarea,byfollowingthesegradientsNandH,theresultingparabolicheatowisslightlynonlinearinanaturalgeomet-ricway.Thisso-calledmean-curvatureowhasbeenextensivelystudiedasageometricsmoothingow.3.IntegralCurvatureRelationsforSurfacesForsurfaces,theintegralcurvaturerelationswewanttoconsiderrelateareaintegralsoveraregionDMtoarclengthintegralsovertheboundary =@D.TheGauß/Bonnettheoremsays,whenDisadisk,2�ZZDKdA=I gds=I T0ds=�I0dx;wheredx=Tdsisthevectorlineelementalong .ThisimpliesthatthetotalGaußcurvatureofDdependsonlyonacollarneighborhoodof :ifwemakeanymodicationtoDsupportedawayfromtheboundary,thetotalcurvatureisunchanged(aslongasDremainstopologicallyadisk).WewillextendthenotionofGaußcurvaturefromsmoothsurfacestomoregeneralsurfaces(inparticularpolyhedralsurfaces)byrequiringthispropertytoremaintrue.TheotherrelationsareallprovedbyStokes'Theorem,andthusonlydependon beingtheboundaryofDinahomologicalsense;fortheseDisnotrequiredtobeadisk.FirstconsiderthevectorareaA :=1 2I xdx=ZZDdA:Theright-handsiderepresentsthetotalvectorareaofanysurfacespanning ,andtherelationshowsthistodependonlyon (andthistimenotevenonacollarneighborhood).Theintegrandontheleft-handsidedependsonachoiceoforiginforthecoordinates,butbecauseweintegrateoveraclosedloop,theintegralisindependentofthischoice.Bothsidesofthisvectorareaformulacanbeinterpreteddirectlyforapolyhedralsurface,andtheequationremainstrueinthatcase.WenotealsothatthisvectorareaA ispreservedwhen evolvesundertheHasimotoorsmoke-ringow. 6JohnM.Sullivan(SimilarargumentsleadtoanotionofGaußcurvature—denedasameasure—foranyrectiablesurface.Forourpolyhedralsurface,thismeasureconsistsofpointmassesatvertices.Surfacescanalsobebuiltfromintrinsicallyatpiecesjoinedalongcurvededges.TheirGaußcurvatureisspreadoutwithalineardensityalongtheseedges.Thistechniqueisoftenusedindesigningclothes,wherecornerswouldbeundesirable.)NotethatKpisclearlyanintrinsicnotion,asitshouldbe,dependingonlyontheanglesofeachtriangleandnotonthepreciseembeddingintoR3.Sometimesitisusefultohaveanotionofcombinatorialcurvature,independentofallgeometricinformation.Givenjustacombinatorialtriangulation,wecanpretendthateachtriangleisequilateralwithangles=60,whetherornotthatgeometrycouldbeembeddedinspace.TheresultingcombinatorialcurvatureisKp= 3(6�degp).Inthiscontext,theglobalformPKp=2(M)ofGauß/BonnetamountstonothingmorethanthedenitionoftheEulercharacteristic.4.2.VectorareaThevectorareaformulaA :=1 2I xdx=ZZDdAneedsnospecialinterpretationfordiscretesurfaces:bothsidesoftheequationmakesensedirectly,sincethesurfacenormaliswell-denedalmosteverywhere.However,itisworthinterpretingthisformulaforthecasewhenDisthestarofavertexp.Moregener-ally,suppose isanyclosedcurve(smoothorpolygonal),andDistheconefrompto (theunionofalllinesegmentspqforq2 ).Fixing andlettingpvary,wendthatthevolumeenclosedbythisconeisalinearfunctionofp,andAp:=rpVolD=A=3=1 6H xdx.WealsonotethatanysuchconeDisintrinsicallyatexceptattheconepointp,andthat2�Kpistheconeangleatp.4.3.MeancurvatureThemeancurvatureofadiscretesurfaceMissupportedalongtheedges.Ifeisanedge,andeDStar(e)=T1[T2,thenHe:=ZZDHdA=I@Dds=e1�e2=J1e�J2e:HereiisthenormalvectortothetriangleTi,andJiisrotationby90intheplaneofthattriangle.NotethatjHej=2jejsine 2whereeistheexteriordihedralanglealongtheedge,denedbycose=12.NononplanardiscretesurfacehasHe=0alongeveryedge.Butthisdiscretemeancurvaturecancanceloutaroundthevertices.Weset2Hp:=Xe3pHe=ZZStar(p)HdA=ILink(p)ds:Theareaofthediscretesurfaceisafunctionofthevertexpositions;ifwevaryonlyonevertexp,wendthatrpArea(M)=�Hp. 8JohnM.Sullivangeneral,ofcourse,thevectorsHpandAparenotevenparallel:theygivetwocompetingnotionsofanormalvectoratp.Still,hp:=jrpAreaj jrpVolj=jHpj jApj=jRRStarpHdAj jRRStarpdAjgivesabetternotionofmeancurvaturenearpthan,say,thesmallerquantity3jHpj=Area(Star(p))=jRRHdAj=RR1dA.Forthisreason,agooddiscretizationoftheWillmoreelasticenergyRRH2dAisgivenbyPph2p1 3Area(Star(p)).4.6.RelationtodiscreteharmonicmapsDiscreteminimalsurfacesminimizearea,butalsohaveotherpropertiessimilartothoseofsmoothminimalsurfaces.Forinstance,inaconformalparameterization,theircoor-dinatefunctionsareharmonic.Wedon'tknowwheningeneraladiscretemapshouldbeconsideredconformal,buttheidentitymapiscertainlyconformal.WehavethatMisdiscreteminimalifandonlyifId:M!R3isdiscreteharmonic.HereaPLmapf:M!NiscalleddiscreteharmonicifitisacriticalpointfortheDirichletenergyE(f):=PTjrfTj2AreaM(T):WendthatE(f)�AreaNisameasureofnoncon-formality.Fortheidentitymap,E(IdM)=Area(M)andrpE(IdM)=rpArea(M)conrmingthatMisminimalifandonlyifIdMisharmonic.5.VectorBundlesonPolyhedralManifoldsHerewegiveageneraldenitionofforvectorbundlesandconnectionsonpolyhedralmanifolds;thisleadstoanotherinterpretationoftheGaußcurvatureforapolyhedralsurface.Here,apolyhedraln-manifoldPnwillmeanaCW-complexwhichishomeomor-phictoann-dimensionalmanifold,andwhichisregularandsatisestheintersectioncondition(see[Zie06]).Thatis,eachfacet(n-cell)isembeddedinPnwithnoidentica-tionsonitsboundary,andtheintersectionofanytwofaces(ofanydimension)isasingleface(ifnonempty).Denition.AdiscreterankkvectorbundleVkoverPnconsistsofavectorspaceVf=RkforeachfacetfofP.AconnectiononVkisachoiceofisomorphismrbetweenVfandVf0foreachridge(or(n�1)–cell)ofP.Here,theridgeristheintersectionofthetwofacetsfandf0.WearemostinterestedinthecasewherethevectorspacesVfhaveinnerproducts,andtheisomorphismsrareorthogonal.Considerthecasen=1,wherePisapolygonalcurve.Onanarc(oropencurve)anyvectorbundleistrivial.Onaloop(orclosedcurve),arankkvectorbundleisdeter-mined(uptoisomorphism)simplybyitsholonomyaroundtheloop,anautomorphism:Rk!Rk. 10JohnM.Sullivan[Zie06]G¨unterM.Ziegler,Polyhedralsurfacesofhighgenus,DiscreteDifferentialGeometry(Bobenko,Schr¨oder,Sullivan,andZiegler,eds.),Birkh¨auser,2006,thisvolume.JohnM.Sullivane-mail:sullivan@math.tu-berlin.deInstitutf¨urMathematik,MA3–2TechnischeUniversit¨atBerlin,DE–10623Berlin