PPT-Discrete-Time State-Space
Author : test | Published Date : 2018-11-14
Equations Outline Discretetime state equation from solution of continuoustime state equation Expressions in terms of constituent matrices Example 2 Solution
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Discrete-Time State-Space" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Discrete-Time State-Space: Transcript
Equations Outline Discretetime state equation from solution of continuoustime state equation Expressions in terms of constituent matrices Example 2 Solution of State Equation. Transfer function approach of system modeling provides 64257nal relation between output variable and input variable However a system may have other internal variables of import ance State variable representa tion takes into account of all such inter 5.1 Discrete-time Fourier Transform . Representation for discrete-time signals. Chapters 3, 4, 5. Chap. 3 . Periodic. Fourier Series. Chap. 4 . Aperiodic . Fourier Transform . Chap. 5 . Aperiodic . Control . Systems. Controllability&Observability. CONTROLLABILITY. Complete . State. . Controllability. . for. a . Linear. Time . Invariant. . Discrete. -Time Control . System. CONTROLLABILITY. Dr. Feng Gu. Way to study a system. . Cited from Simulation, Modeling & Analysis (3/e) by Law and . Kelton. , 2000, p. 4, Figure 1.1. Model taxonomy. Modeling formalisms and their simulators . Discrete time model and their simulators . imtiaz.hussain@faculty.muet.edu.pk. . Introduction to State Space. The . state space . is defined as the n-dimensional space in which the components of the state vector represents its coordinate axes. . 5.1 Discrete-time Fourier Transform . Representation for discrete-time signals. Chapters 3, 4, 5. Chap. 3 . Periodic. Fourier Series. Chap. 4 . Aperiodic . Fourier Transform . Chap. 5 . Aperiodic . Agents. An . agent. is anything that can be viewed as . perceiving. its . environment. through . sensors. and . acting. upon that environment through . actuators. Example: Vacuum-Agent. Percepts. • State-space representation.. • Linear state-space equations.. • Nonlinear state-space equations.. • Linearization of state-space equations.. 2. Input-output Description. The description is valid for. Announcements:. HW . 4. . posted, . due Tues May 8 at 4:30pm. . No late HWs as solutions will be available immediately.. Midterm details on next page. HW . 5 will . be posted . Fri May 11. , . due . Controllability&Observability. CONTROLLABILITY. Complete . State. . Controllability. . for. a . Linear. Time . Invariant. . Discrete. -Time Control . System. CONTROLLABILITY. Complete . State. Andrew J. Viterbi. Presidential Chair Professor of Electrical Engineering. University of Southern California. September 25, 2017. Careers’ Timeline. JPL/USC 1957-1963. UCLA 1963-1975. UCSD 1975-1985 . Chapter 5. Discrete-Time Process Models. Discrete-Time Transfer Functions. The input to the continuous-time system . G. (. s. ) is the signal:. The system response is given by the convolution integral:. Chapter 5. Discrete-Time Process Models. Discrete-Time Transfer Functions. The input to the continuous-time system . G. (. s. ) is the signal:. The system response is given by the convolution integral:. ε. N = {0, 1, 2, …} is a sequence of time-indexed RVs X. 0. , X. 1. , X. 2. , …, with X = {. X. t. , t ≥ 0}.. Discrete-Time Markov Chain (DTMC). : A SP, . X = {. X. t. , t ≥ . 0}, is a DTMC if, for all t, .
Download Document
Here is the link to download the presentation.
"Discrete-Time State-Space"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents