/
EE Winter  Lecture  Analysis of systems with sector nonlinearities Sector nonlinearities EE Winter  Lecture  Analysis of systems with sector nonlinearities Sector nonlinearities

EE Winter Lecture Analysis of systems with sector nonlinearities Sector nonlinearities - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
631 views
Uploaded On 2014-12-13

EE Winter Lecture Analysis of systems with sector nonlinearities Sector nonlinearities - PPT Presentation

g and solve Lyapunov equation 957BC 957BC 0 for hope works for nonlinear system Analysis of systems with sector nonlinearities 169 brPage 10br Multiple nonlinearities we consider system Ax Bp q Cx p t q i 1 m where t is sector u for each w ID: 23219

and solve Lyapunov

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EE Winter Lecture Analysis of systems ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EE363Winter2008-09Lecture16AnalysisofsystemswithsectornonlinearitiesSectornonlinearitiesLur'esystemAnalysisviaquadraticLyapunovfunctionsExtensiontomultiplenonlinearities16{1 Sectornonlinearitiesafunction:R!Rissaidtobeinsector[l;u]ifforallq2R,p=(q)liesbetweenlqanduq qpp=(q)p=lqp=uqcanbeexpressedasquadraticinequality(puq)(plq)0forallq;p=(q)Analysisofsystemswithsectornonlinearities16{2 examples:sector[1;1]meansj(q)jjqjsector[0;1]means(q)andqalwayshavesamesign(graphin rst&thirdquadrants)someequivalentstatements:isinsector[l;u]i forallq, (q)u+l 2q ul 2jqjisinsector[l;u]i foreachqthereis(q)2[l;u]with(q)=(q)qAnalysisofsystemswithsectornonlinearities16{3 Nonlinearfeedbackrepresentationlineardynamicalsystemwithnonlinearfeedback pq(t;)_x=Ax+Bpq=Cxclosed-loopsystem:_x=Ax+B(t;Cx)acommonrepresentationthatseparateslinearandnonlineartime-varyingpartsoftenp,qarescalarsignalsAnalysisofsystemswithsectornonlinearities16{4 Lur'esystema(singlenonlinearity)Lur'esystemhastheform_x=Ax+Bp;q=Cx;p=(t;q)where(t;):R!Risinsector[l;u]foreachthereA,B,C,l,anduaregiven;isotherwisenotspeci edacommonmethodfordescribingtime-varyingnonlinearityand/oruncertaintygoalistoprovestability,orderiveabound,usingonlythesectorinformationaboutifwesucceed,theresultisstrong,sinceitappliestoalargefamilyofnonlineartime-varyingsystemsAnalysisofsystemswithsectornonlinearities16{5 StabilityanalysisviaquadraticLyapunovfunctionslet'strytoestablishglobalasymptoticstabilityofLur'esystem,usingquadraticLyapunovfunctionV(z)=zTPzwe'llrequireP�0and_V(z) V(z),where �0isgivensecondconditionis:_V(z)+ V(z)=2zTP(Az+B(t;Cz))+ zTPz0forallzandallsector[l;u]functions(t;)sameas:2zTP(Az+Bp)+ zTPz0forallz,andallpsatisfying(puq)(plq)0,whereq=CzAnalysisofsystemswithsectornonlinearities16{6 wecanexpressthislastconditionasaquadraticinequalityin(z;p):zpTCTCCTC1zp0where=lu,=(l+u)=2so_V+ V0isequivalentto:zpTATP+PA+ PPBBTP0zp0wheneverzpTCTCCTC1zp0Analysisofsystemswithsectornonlinearities16{7 by(lossless)S-procedurethisisequivalentto:thereisa0withATP+PA+ PPBBTP0CTCCTC1orATP+PA+ PCTCPB+CTBTP+C0anLMIinPand(2;2blockautomaticallygives0)byhomogeneity,wecanreplaceconditionP�0withPIour nalLMIisATP+PA+ PCTCPB+CTBTP+C0;PIwithvariablesPandAnalysisofsystemswithsectornonlinearities16{8 hence,canecientlydetermineifthereexistsaquadraticLyapunovfunctionthatprovesstabilityofLur'esystemthisLMIcanalsobesolvedviaanARE-likeequation,orbyagraphicalmethodthathasbeenknownsincethe1960sthismethodismoresophisticatedandpowerfulthanthe1895approach:{replacenonlinearitywith(t;q)=q{chooseQ�0(e.g.,Q=I)andsolveLyapunovequation(A+BC)TP+P(A+BC)+Q=0forP{hopePworksfornonlinearsystemAnalysisofsystemswithsectornonlinearities16{9 Multiplenonlinearitiesweconsidersystem_x=Ax+Bp;q=Cx;pi=i(t;qi);i=1;:::;mwherei(t;):R!Rissector[li;ui]foreachtweseekV(z)=zTPz,withP�0,sothat_V+ V0lastconditionequivalentto:zpTATP+PA+ PPBBTP0zp0whenever(piuiqi)(piliqi)0;i=1;:::;mAnalysisofsystemswithsectornonlinearities16{10 wecanexpressthislastconditionaszpTcicTiicieTiieicTieieTizp0;i=1;:::;mwherecTiistheithrowofC,eiistheithunitvector,i=liui,andi=(li+ui)=2nowweuse(lossy)S-proceduretogetasucientcondition:thereexists1;:::;m0suchthatATP+PA+ PPmi=1iicicTiPB+Pmi=1iicieTiBTP+Pmi=1iieicTiPmi=1ieieTi0Analysisofsystemswithsectornonlinearities16{11 wecanwritethisas:ATP+PA+ PCTDFCPB+CTDGBTP+DGCD0whereD=diag(1;:::;m);F=diag(1;:::;m);G=diag(1;:::;m)thisisanLMIinvariablesPandD2;2blockautomaticallygivesusi0byhomogeneity,wecanaddPItoensureP�0solvingtheseLMIsallowsusto(sometimes) ndquadraticLyapunovfunctionsforLur'esystemwithmultiplenonlinearities(whichwasimpossibleuntilrecently)Analysisofsystemswithsectornonlinearities16{12 Example x1x2x31=s1=s1=s1()2()3()2weconsidersystem_x2=1(t;x1);_x3=2(t;x2);_x1=3(t;2(x1+x2+x3))where1(t;);2(t;);3(t;)aresector[1;1+]givesthepercentagenonlinearityfor=0,wehave(stable)linearsystem_x=2422210001035xAnalysisofsystemswithsectornonlinearities16{13 let'sputsysteminLur'eform:_x=Ax+Bp;q=Cx;pi=i(qi)whereA=0;B=2400110001035;C=2410001022235thesectorlimitsareli=1,ui=1+de ne=liui=12,andnotethat(li+ui)=2=1Analysisofsystemswithsectornonlinearities16{14 wetakex(0)=(1;0;0),andseektoboundJ=Z10kx(t)k2dt(for=0wecancalculateJexactlybysolvingaLyapunovequation)we'llusequadraticLyapunovfunctionV(z)=zTPz,withP0LyapunovconditionsforboundingJ:if_V(z)zTzwheneverthesectorconditionsaresatis ed,thenJx(0)TPx(0)=P11useS-procedureasabovetogetsucientcondition:ATP+PA+ICTDCPB+CTDBTP+DCD0whichisanLMIinvariablesPandD=diag(1;2;3)notethatLMIgivesi0automaticallyAnalysisofsystemswithsectornonlinearities16{15 togetbestboundonJforgiven,wesolveSDPminimizeP11subjecttoATP+PA+ICTDCPB+CTDBTP+DCD0P0withvariablesPandD(whichisdiagonal)optimalvaluegivesbestboundonJthatcanbeobtainedfromaquadraticLyapunovfunction,usingS-procedureAnalysisofsystemswithsectornonlinearities16{16 UpperboundonJ 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 100 101 P11(upperboundonJ)boundistightfor=0;for0:15,LMIisinfeasibleAnalysisofsystemswithsectornonlinearities16{17 Approximateworst-casesimulationheuristicmethodfor nding`bad'i's,i.e.,onesthatleadtolargeJ ndVfromworst-caseanalysisasaboveattimet,choosepi'stomaximize_V(x(t))subjecttosectorconstraintsjpiqijjqijusing_V(x(t))=2xTP(Ax+Bp),wegetp=q+diag(sign(BTPx))jqjsimulate_x=Ax+Bp;p=q+diag(sign(BTPx))jqjstartingfromx(0)=(1;0;0)Analysisofsystemswithsectornonlinearities16{18 Approximateworst-casesimulationAWCsimulationwith=0:05:Jawc=1:49;Jub=1:65forcomparison,linearcase(=0):Jlin=1:00 0 5 10 15 20 25 30 35 40 45 50 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 tx2(t)Analysisofsystemswithsectornonlinearities16{19 Upperandlowerboundsonworst-caseJ 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 100 101 boundsonJlowercurvegivesJobtainedfromapproximateworst-casesimulationAnalysisofsystemswithsectornonlinearities16{20