/
Assessing and Improving Instruction Assessing and Improving Instruction

Assessing and Improving Instruction - PowerPoint Presentation

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
389 views
Uploaded On 2017-05-10

Assessing and Improving Instruction - PPT Presentation

Martin Kozloff 2014 Outline 1 Maximize time for teaching 2 Use productive grouping in differentiated instruction   3 Prepare student for new material being taught Make sure they are firm on the preskill ID: 546893

examples students test knowledge students examples knowledge test lesson teach model acquisition firm concepts routine lead elements instruction nonexamples

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Assessing and Improving Instruction" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Assessing and Improving Instruction

Martin

Kozloff

2014Slide2

Outline

1

. Maximize

time for teaching.

2. Use productive grouping in differentiated instruction.

 

3. Prepare student for new material being taught. Make sure they are firm on the pre-skill

elements

and/or background knowledge.

 

4. Prepare students for the start of each lesson and for the start of each new task in the lesson.

 

5. Design instruction on the basis of

objectives

: the performance (what students will do) and performance standards (how they will do it).

 

6. Prepare the lesson for delivery. Slide3

7. Lessons are a sequence of knowledge-rich tasks. Each task in a lesson has a clear instructional function.

 

8. Use the proper format for teaching each form of knowledge: facts, concepts, rule-relationships, routines.

 

9. Adequately teach and assess all phases of mastery: acquisition of new knowledge (initial instruction) fluency (accurate and quick), generalization (application to new examples), integration of elements into larger wholes, retention.

 

10. Organize lessons around this format. Seven-point lesson plan.Slide4

11. Plan ways to scaffold instruction ; i.e., various kinds of assistance to help teachers communicate information, and to help students acquire, organize, retrieve, and apply information/knowledge.

12. Begin instruction on a new lesson with review, especially of knowledge elements and background knowledge relevant to the current instruction (pre-skills).

 

13. Next in a lesson, frame the main business of the lesson by stating the kind of new knowledge to be taught, the objectives (final performance and standards), and big ideas.

 

14. Next in a lesson, model or present new information clearly and focus on the objectives. Slide5

15. If students are not likely to learn from the model alone, lead students through the application of the new information just modeled.

 

16. Use pre-corrections, or reminders, to prevent errors when it is students’ turn to respond.  

 

17. After the model (and if used, the lead), give an immediate acquisition test/check to determine whether students learned the new information.

 

18. Correct all errors and/or firm weak knowledge after the lead and/or test/check.

Slide6

19

. If new material is a concept (e.g., mitosis), rule-relationship (e.g., how price varies with demand), or cognitive routine (e.g., a math algorithm), make sure to: (a) use a wide and varied range of examples; (b) juxtapose examples to reveal sameness; (c) juxtapose examples and

nonexamples

to reveal difference; (d) when teaching routines (sequences of steps), use a sequence of formats, from more to less teacher-modeled.

 

20. Give a

delayed acquisition test/check

to determine whether students learned the concept, rule relationship, or cognitive routine from

the set of the examples and

nonexamples

.

 

21. Teach at a brisk pace, with enthusiasm.

 

22. End the lesson by

reviewing the lesson

(e.g., main things taught) and state how what was taught is relevant to next lessons.

 

Use

frequent (every 5 to 10 lessons) curriculum-based progress monitoring assessments

.

Now

let’s look at each item in more detail.Slide7

Curriculum

1. A

curriculum

is all of the

information

, skills, or knowledge that students are to learn, and the

sequence

in which they are to learn it.

Scope and sequence charts

show

what

is taught and

when

.Slide8

Scope and Sequence (What and When) Chart for a

Beginning Reading Curriculum

Lessons 1

 100

Hear sounds in words (phonemic awareness)

|

--------------|

Sounds that go with letters (letter-sound correspondence: alphabetic principle)

|-------------------------------------------------------|

Decoding (sounding out unfamiliar words: alphabetic principle)

|-----------------------------------------------------------|

Fluency (reading letters, words, sentences, paragraphs fast and accurately)

|-------------------------------------------------------------|

Vocabulary

|-------------------------------------------------------------|

Text Comprehension

|----------------------------------------------------------|Slide9

The sequence should be meaningful (make sense) and coherent (knowledge elements hang together

).

How to do this.

Organize the content (what is taught) and sequence around Big Ideas. For example:

a. A theory of social change, for a course on history.

The

age of pioneers

the age of conquest

the age of

commerce

the age of affluence

the age of intellect

the

age of

decadence (Sir John

Glubb

. The fate of

empires.)

b. The concept of system, for a course on science.

Slide10

c. The

idea that poetry reflects and is shaped by the social

setting of the poet.

d. The idea

that some groups want a strong government and

other groups want a weak government

2

.

Organize content in a logical progression. For example:

a. Time line.

b. Story.

c. Deductive: General idea followed by supporting facts.

d. Inductive: Facts that reveal or from which students can

induce (figure out) the general idea.Slide11

e. And in all curricula, teach knowledge elements before you teach larger routines that USE the knowledge elements.

Knowledge analysis

tells you what these elements are.

(1) Sound out ram. What does student do/have to know?

(2) Translate second paragraph of Declaration of

Independence into a list of rule statements. What does

student have to know?Slide12

Curriculum

Lessons

/ 1……….10……………….35…………………..50…………………………90

days

Unit 1 Unit 2 Unit 3 Unit 4

Lesson

Task 1. Review and firm. Sequence of sentences.

Task 2 New: facts, concepts, rules, routines.

Task 3 More

Task 4 Work on fluency and/or generalization

Task 5 Integrate? Apply? Task 6 Review, firm, reteachOf course, instruction occurs within a curriculum. Here are the main units. Slide13

Note: there are objectives---performances and standards---for the whole curriculum, for each unit, for each lesson, and for each task in a lesson

.

Performance: What students will do.

Standards/assessment: How students are to do the performance. Usually:

Correct, such as percentage correct.

Speed. Such as time; correct problems per minute.

Completeness: steps completed, issues addressed.Slide14

If your materials do not state objectives for you, then you have to make them up

.

Where do you get objectives for a whole curriculum?

State, district, and school standards.

Research; e.g., on “best practices in science.”

Your own knowledge.Slide15

What about objectives for units, lessons, and tasks

?

Do a knowledge analysis of the objectives for the whole curriculum.

“Students describe how galaxies consist of solar systems, which consist of planets, which (in the case of earth) consist of ecosystems, which are influenced by a variety of other systems (geological, biological, sociological), which consist of life forms.”

“Students define the following concepts: system, ecosystem, tectonics, ….”

What do you have to teach for students to achieve those objectives?Slide16

In what sequence

would you teach

that content?

These large chunks are

your Units:

Systems

. 2. Biological systems. 3. Ecosystems. 4. Earth as a system

. 5. Solar system. 6. Galactic systems.

Now, what are objectives for each unit?

System.

“Define system.” “What are main features of systems: structure

and process?” “Give examples of systems and state their

features.”

This is what you have to teach for Unit 1, in a sequence of lessons.Slide17

Each lesson teaches some of the knowledge needed to achieve the Unit objectives.

For example, Lesson 1 of Unit 1 might give examples of systems---atom, cell, organ, forest, marsh—and then define system and tell the features.

There would be objectives for this lesson. “Give examples of systems.” “State the definition of system.” “State main features of systems.”

This is what you would teach in Lesson 1.Slide18

Each lesson is a sequence of Tasks.

Each task focuses on a part of the knowledge needed for students to achieve the lesson (and therefore the Unit, and therefore the curriculum) objectives.

For example,

Task 1.

Boys and girls. New concept. System. Spell system.

Here’s the definition of system. Look at your guided

notes. A

system is a group

of interacting, interrelated, or interdependent elements forming a complex

whole.

say that definition….

[Task objective] You Slide19

Task 2.

Let’s look at each part of that definition. You tell me the main words in it. [Task objective.]

Elements…

Interacting…

Interconnected…

Complex whole…

Task 3. Now let’s examine what these words mean, and see how they describe different kinds of systems. [Task objective is that students (a) define each of the system terms, and (b) use them to identify aspects of different systems

.

“Here’s a muscle cell. Name the elements….”Slide20

Instruction

1

. Maximize

time for teaching.

a. Have necessary materials readily available and at hand.

 

b. Control

noninstruction

activities---announcements and other interruptions.

 

c. Use routines for distributing and collecting materials

. Teach how; practice; do “sprints.”Slide21

2.

Use productive grouping in differentiated instruction.

 

a. Give pre-tests or placement tests

(of what is taught throughout a curriculum) to

place students in groups with other students at the same level or spot in a curriculum---homogeneous grouping.

 

b. Keep the groups small—say six to eight students.

 

c. Move students to different groups based on progress monitoring information.

 

d. Have lower performers seated close to you, and separate students with problematic behaviors.Slide22

Prepare

student for new material being taught.

Make

sure they are firm on the pre-skill

elements

and/or background knowledge.

These knowledge elements are determined by

knowledge analysis

; e.g.,

revealing the

important concepts in a science passage; the concepts and rules needed to do each step in a math routine.

 

Teach elements (pre-skills) early, and review/firm them continually before they are integrated into larger routines that USE the elements.Slide23

4.

Prepare students

for the start of each lesson and for the start of each new task in the lesson.

 

a. Teach

and practice having students get ready for learning. “Show me ready.”

 

b. Get

into lessons quickly, and give encouragement. “Okay, we’re ready to learn. Here we go. Remember, when you try hard, you get it!

 

c.

Reinforce

attentive, effortful behavior. “I love the way John is listening to Jerry read.”

 d. Re-establish attention and participation immediately. “I need to see everyone sitting ready.” “I need to hear EVERYbody!..... That’s it. NOW we have everybody!” ”My turn!”Slide24

Design

instruction on the basis of

objectives

a.

W

hat students will DO---not what they will know, appreciate, understand, or demonstrate), and

b.

HOW

they will do it---performance standards such as accuracy, completeness, and

speed.

Focus

communication precisely on objectives.

No blather.Slide25

6.

Prepare

the lesson for delivery.

a.

Script

portions

that must be

logically faultless

, such as wording and examples in definitions, steps in routines (such as math and reading).

 

b.

Prepare places in your presentation for test/checks of student acquisition. “So what do you do next?” “Remember to…” c. Anticipate specific errors or difficult tasks, and prepare to repeat models and the lead (“with me”); use pre-corrections (reminders) and

information checks

. For example,

 

“They are not yet firm with these definitions; so I’ll review them first.”

“Remind students

of the

rule on renaming.”

“Ask students to repeat

an

instruction.”Slide26

7. Lessons are a sequence of knowledge-rich tasks. Each task in a lesson has a clear

instructional function

.

 

Teach

something new

(facts, concepts, rules, cognitive routines). [acquisition]

New vocabulary word

. Republic.”

“Here are the steps in the routine for calculating slope and

intercept.”

b. Summarize. “The 9 events leading to the War of Independence are

…”

 

Build

fluency. “You can do these problems in 1 minute.

The error

limit

is two. GO

!”

 

d. Review and probe/test (retention). “Let’s review our concepts.”Slide27

More instructional function

s…

e. Expand---add more to existing facts, examples, concepts.

 

f. Generalize knowledge to new examples. “Here are new

examples

of linear functions. Calculate slope and intercept with

the

same routine as with earlier examples.”

 

g. Strategically integrate---combine information into a larger whole,

such as an explanatory essay, or a research project, or a math routine. For example…Teach what a linear function is. + >> Define data points as coordinates on X/Y axes. + >> Graph data points. + >> Explain the straight lines as examples of linear functions. +>> Show that all sections of a line (function) are the same in the ratio of change in Y over change in X. +>> Model, lead, test the sequence of steps in the routine for calculating the slope.

Slide28

Use

the proper format for teaching each form of

knowledge

, based on the logic of learning.

We have a learning mechanism: sense organs and brain.

The learning mechanism runs on logic. It does two things.

a.

The learning mechanism figures out what events mean.

This is the construction of knowledge.

The learning mechanism uses

inductive logic.

How? It compares and contrasts events; it sees how they are the same and different; it sees how some things go together and other things don’t; it infers (induces, generalizes, figures out) that:Slide29

a.

There are KINDS of things-

--classes, called

concepts.

Millions of classes/concepts make up the stuff in our reality.

We

don’t see a configuration of colors and shapes.

We see

a member of the class/concept of table

.

We see reality through our concepts.

The learning mechanism also learns that (or is told that)

b. Individual examples of kinds of things have features. The dog is

brown. Facts.The learning mechanism also figures out that…..Slide30

Some

classes/concepts

are connected

. All dogs are canines. Some cheese reeks of decay. No poison is good eating. Whenever X increases, Y increases. If and only if X occurs will Y

occur.

Rules.

And the learning mechanism gets (infers) that

Some outcomes happen through a sequence.

Routines.

For example, to figure out (a + b) (c + d), do FOIL.

To sound out a word (ram) do

rrraaammm

. To describe a forest, state the following facts….These are the only kinds of knowledge we can know, store, communicate, learn, teach. Concepts, facts, rules, routines.Slide31

Mostly, we store and communicate knowledge with arrangements of sounds, words, and sentences—language (vocal, written, or

nonvocal

gestures).

But we also use sculpture (“Is that a man or a banana?”), music, dance, painting.Slide32

The

learning mechanism figures out what events

mean---concepts, facts, rules, routines—using

inductive

logic. The learning mechanism also tests, affirms, disconfirms, and improves knowledge (concepts

, facts, rules,

routines) through

deductive logic.

“I have figured out that civilizations move through stages. [knowledge of a routine.] America is a civilization that is in the phase of intellect. I predict that America will next be in the phase of decadence.” [If the prediction is confirmed, then the whole theory is confirmed. If the prediction is not confirmed, the learning mechanism may try to revise the theory so that it fits the facts.]Slide33

It stands to reason that:

When instruction makes it easy for the learning mechanism to do its inductive (knowledge construction) and deduction (knowledge applying and testing) business, the learner will make fewer errors on the way to an objective, and will take less time and less learning experiences to achieve an objective.

[Does teaching with multiple formats make it easier?!!!] Slide34

So, what are the kinds of knowledge, and what are effective formats for teaching them?Slide35

1a. Basic

or sensory concepts.

One example shows all of the defining features.

red, straight line, on top.

How to teach.

**

Present/model a range of

examples

that differ in size, shape, etc., but are the

same in the defining feature

(e.g., color)—to allow comparison, to identify sameness. “This is red.” ** Juxtapose examples and nonexamples that are the same except for the defining feature---to show contrast, to identify difference that makes the difference.

**

Test with all examples and

nonexamples

(

delayed acquisition test

). “Is this red?...Is this red?”

**

Test with

new

examples (

generalization test

).

“red” “red” “not red” “red” “not red” “red”

juxtaposition

juxtapositionSlide36

1b.

Higher-order

concepts.

Features are spread out. Can’t be sensed all at once.

Representative democracy, cell mitosis, table, galaxy.

How to teach.

a.

Teach

the definition

: model, lead, test/check.

“Mitosis is the process of cell division in eukaryotic cells (this has to be defined FIRST) that consists of six phases---interphase, prophase, metaphase anaphase, telophase, cytokinesis. Slide37

Then

present examples and

nonexamples

, as

with

sensory concepts.

**

Test all

(delayed acquisition test). “Is

this

…?” “How do you know

?”

** Generalize to new examples and nonexamples.Slide38

How to teach.

b.

Teach the definition

: model, lead, test/checkSlide39

Format for teaching facts.

 

(1) State the fact (model). [Students write it down in guided notes? Students say it to

themselves

?]

(2) Then have students say the fact with you (lead). [If needed.]

(3) Then have students state the fact by themselves. [test/check] Slide40

Format for teaching higher-order concepts, continued.

(2) Then present examples that show each phase with different cells, so that students can see the

sameness

in the essential features. “This is metaphase. Notice

it has (these features).

And THIS is

metaphase

. Notice that

it

also

has (these features)…”

 

(3) Then juxtapose examples and nonexamples that are similar, but that differ in the essential (defining) feature of each phase. “This is metaphase. Notice these both have…. This is NOT metaphase. Notice that the one called ‘metaphase has.... But the once called ‘not metaphase one does NOT have… So THAT feature is the difference between metaphase and not metaphase.”Slide41

Format for teaching higher-order concepts, continued.

4) Then test all examples and

nonexamples

used (delayed acquisition test). “Is this…?”….“How do

you know?”

(5) Then present new examples and

nonexamples

and show student the features that make them examples and

nonexamples

. Then test. “Is this anaphase?... How do you know?” [Students state the features that define the concept—anaphase.] (Generalization)Slide42

a. Facts.

Declarative statements (subject

predicate) about a particular, individual subject.

Examples.

The first ten amendments are called “The Bill of Rights.”

Boston is the capital of Massachusetts.Slide43

Format

2.

for teaching higher-order concepts.

Inductive.

Give examples of a concept. “This is a republic.” [Rome, Athens, Venice, U.S.A.] Tell the features. Some are part of the definition (political units, representation, voting); others are not (climate, language, time period, size).

Give

nonexamples

of the concept. Make sure the

nonexamples

are just like the examples in the

nonrelevant

features, but are different in the defining features, so that students can infer the difference (in the relevant features) that makes the difference in whether the instance is an example or a

nonexample

.3. Coach students to compare examples to find sameness, and to contrast examples and nonexamples to find difference. Coach students to state how examples are the same. These same

features ae the definition.Slide44

Coach

students to

state the definition:

“A republic is a political system in which (features)…”

Show new examples and

nonexamples

and have students identify them as such. Have students use the definition to make the judgment. “How do you know?” This is a generalization test.Slide45

d. Rules.

Statements that connect NOT one thing and another thing (e.g., name and

date = fact),

but

connect

whole sets of things (concepts). Examples:

When

(whenever, if, the more)

demand

(a whole

class

of examples) increases, (then, the more/the less) price (a whole class of examples) increases.  

All/

some

/

no

(examples in the class of) dogs/

cats

/

fish

are (members of the larger class of)

canines/

tigers

/

have wheels

.

 

Rule relationships

be shown on diagrams; e.g., graphs and models of interconnections.Slide46

Format for teaching rules.

Teach

rules one of two ways.

 

a.

Deductive

method-

--from general (rule) to specific (examples). Examples reveal rule.

(

1) Teach the rule statement (model, lead, test) first.

(

2) Then present examples and

nonexamples---as with concepts. Verbal and visual models. (3) Then test all examples and nonexamples. “Is this (verbal description or graph) an example of the demand-price rule?”

No.”

How do you know

?” Students

state rule

.

(4) Then generalize to/test new examples and

nonexamples

.Slide47

Format for teaching rules, continued.

b. Inductive method---from specific (examples) to general (rule).

Students

infer

(figure out) rule

from

examples

. More complex than the deductive method.

(

1) Present a range of examples first (e.g., different

price-demand curves

): cars, oil, gold.

 (2) Show students how to compare the examples and to identify the sameness—the relationship; e.g., one variable goes up and the other variable goes up. “Demand varies directly with price.” (3) Then present nonexamples, and show (in relation to the rule) how they are nonexamples

. “Demand is increasing, but price stays the same. That does NOT fit the

rule.”

(4) Then test all examples and

nonexamples

. “Is this one an example of the rule?... How do

you

know?” [Acquisition test.]

 

(5) Then give new examples and

nonexamples

, and have students say if they are or are not

examples

, and how they know. [Generalization test.]

Slide48

d.

Routines.

A

sequence of steps for getting something done.

Examples

:

Solving

math problems, sounding out words, writing essays, brushing teeth.

Format for teaching routines.

(1) Model, lead, test each step (or a few steps).

 

(2) Add a few more steps and then do the whole sequence so far (model, lead, test); (3) Add a few more, until students are doing the whole sequence. Use a series of formats in which teacher first models all the steps and students watch (or do one step); repeat until students’ part is firm. Then the teacher models fewer steps and the students do the rest, repeating until firm. Repeat until students do the whole routine.Slide49

Adequately

teach and assess all phases of mastery

: acquisition of new knowledge (initial instruction) fluency (accurate and quick), generalization (application to new examples), integration of elements into larger wholes, retention

.

Generalization

Acquisition Integration Retention

Fluency

For each phase, there are stated objectives, instructional procedures, assessment of progress, and suggested remediation (if there is too little progress) based on assessment data

.

Here’s more.

Slide50

Acquisition phase.

General procedure

.

(

1) Gain attention. “Eyes on me

.”

(

2) Frame instruction. “Now you’ll learn to

…” State:

(a) Performance (e.g., which problems); and

(b) Standards (accuracy, speed, completeness).

(

3) Model (‘My turn.”), lead (“Do it with me.”), test/check (“Your turn,”) the first example in the acquisition set; e.g., the routine for solving a kind of math problem. (4) Verify correct responses; correct all errors (model, lead, test, start over, retest), firm weak parts (e.g., a step in a routine), or even reteach.

Even more

Slide51

Acquisition phase, continued

(5) Model, lead, test/check the next examples in the acquisition set.

(6) Test/check all examples---delayed acquisition test.

“Your turn to do ALL our problems.”

(7) Verify correct responses; correct all errors (model, lead, test, start over, retest), firm weak parts (e.g., a step in a routine), or even reteach.

(8) Test/teach generalization to new examples.

“These are new examples, but you can (sound them

out; solve them with the routine). I’ll show you how

(model)…

Now your turn…

(9) Verify correct responses; correct all errors (model, lead, test, start over, retest), firm weak parts (e.g., a step in a routine), or even reteach.Slide52

b.

Building fluency---accuracy plus speed

.

(

1) Model fluency. “I’ll show you how to read sentences fast

.”

(2) Teach

component skills

(knowledge elements) to

fluency, from the smallest to the largest units.

For instance,

Answering comprehension questions

about sentences, then paragraphs, then sections, then whole documents fast.How do you know what are the component skills (knowledge elements) of

a more complex performance? Answer:

knowledge analysis

. “What kinds of fluency are involved in fluent reading (with comprehension) of a whole passage?” Answer---from smaller to larger elements of fluency:

Answering questions about

sentences,

then paragraphs

, then sections,

then whole

documents fast.

Apply this fluency-building principle to any math routine.Slide53

Building fluency, continued.

(3) Use pacing devices. Clapping, metronome.

(4) Repetition. “Let’s read it again the fast way. Error limit is two.”

(5) Speed drills, one minute timings. Graph towards fluency objective.Slide54

c.

Generalization of knowledge to new examples.

(

1) Use a

generalization set-

--examples that differ in nonessential ways

from the

acquisition set

(e.g

., different

numbers),

but are the same in essential ways (e.g., how you treat

them) as

examples of the same KIND of problem. (2) Model for students how to see that new examples are the same (in how you treat them) as the ones in the acquisition set

. Show essential features.

(

3) Work on

new examples

one at a time: model, lead, test.

(

4) Gradually, fade out the model and lead until students are

independent working with the new examples.Slide55

d

.

Strategically integrate part skills (basics) into larger wholes

;

e.g., use knowledge of historical

periods

, biography, rhyme, figures of speech, and symbolism to perform a routine---analyze

poems

.

(1) Analyze a whole into its

knowledge

elements; analyze each element into smaller

elements.

(2) Think of a logical sequence of instruction for integrating the elements.a. One way. Big idea; then details that reveal or support the big idea.For instance, it makes more sense, logically, to show students how to find the big idea expressed by a poem, than to identify figures of speech in poems.

The Second

Coming [excerpt. W.B. Yeats, 1919]

Turning and turning in the widening gyre

[circles]

The falcon cannot hear the falconer;

[Humanity is disconnected from God.]

Things fall apart; the

centre

cannot hold;

[What happens then.]

Mere anarchy is loosed upon the world,

The blood-dimmed tide is loosed, and everywhere

The ceremony of innocence is drowned;

The best lack all conviction, while the worst

Are full of passionate intensity.

More on strategic integration

Slide56

S

trategic integration, continued

.

Another way

. Teach less-complex knowledge elements and gradually integrate them.

For instance, firm up multiplication and subtraction; then teach estimation (56 divided by 12 is….); then integrate these in the routine (set of steps) for long division.

 

As

you firm up earlier taught elements and teach a new one, integrate these into a

whole routine-

--sequence of steps.

Do

this step by step (add steps) and explicitly, with: Model. Teacher alone. Lead. Student and teacher together. Test. Student alone. Verification and error correction—repeat until firm

More

Slide57

Building a routine by integrating elements into a sequence of steps is best done

over

a series of lessons.

Watch as new elements/steps are added to the routine sequence.

Lesson

1

. say sounds (mmm,

ahhh

,

sss

) +

read letter-sounds (m, a, s).

Lesssons 2 and 3. say sounds +  read letter-sounds + use letter-sounds to sound out words (am

aaammm

, ma

mmmaaaa

,

sam

ssssaaammm

)

Lessons 4-8

. say sounds +

read letter-sounds +

use letter-sounds to

sound out words +

say words fast (

sam

!)

+

 read words fast

(

sam

sssaaammm

 sam

!). Even more

Slide58

S

trategic integration, continued.

Teach routines using a

sequence of formats

that move from

more

to

less teacher modeled.

Watch.

First

integrating format. Teacher models steps in

a math

algorithm (and explains what she’s doing); students write numerals and signs. Second integrating format. Teacher tells students to do all the steps she modeled; tells students what they steps are; has students say what they will do---until firm; students do the

steps.

 

Third

integrating format. Teacher has students say what they will do---until firm; students

do

the routine.

 

Last

integrating format. Students do the routine and explain each step.

Slide59

e.

Retention

.

(1)

Cumulative review after a series of lessons.

Most examples from the last lesson plus most

of

the second to last lesson, plus some of previous lessons.

(

2)

Also review at the start, middle, and end of lessons.

Always include items on which students were not firm.

Reteach as needed.

Use retention information (e.g., which students miss which items) to improve teaching in general (e.g., use more examples during acquisition; review and firm more often) and to individualize (e.g., special sessions of intensive instruction).Slide60

10. Organize lessons around this format. Seven-point lesson plan.

a.

Objectives.

State what students will

do; the forms

of knowledge worked on;

the phases of

learning worked on (acquisition, fluency, generalization, retention.); how

learning will be

measured/tested/applied

.

  b. Standards. State type of lesson (lecture, cooperative, mixed); procedures to be followed; expectations/challenge for success.  c. Anticipatory set (to focus attention and provide an organizing framework). Present big ideas (possibly advance organizer in the form of diagram). Review. Slide61

d.

Teaching presentation.

Some variation of gain attention, frame, model, lead, test/check,

verification

(to communicate new fact, list, concept, rule relationship, or routine

),

followed

by

questioning

that expands on the new information. E.g., after asking

comprehensions questions

that are tied directly to the text just read (who said/did what, etc.?) ask for

other

examples students might know. e. Guided practice. Application: worksheets, write poem, solve more math problems, do experiment—but circulate and supervise. f. Closure. Review. Delayed acquisition test/check. Correct errors, form weak parts, reteach as needed. Plan to review at the start of next lesson. g. Independent work.

Not every lesson. E.g., speed drills, paired reading.

 Slide62

The

order

is

like this.

Gain attention

Frame instruction

Model New Information. “My turn.”

Lead students through the information. “Do it with me.”

Give an immediate acquisition test/check.

“Your

turn

.”

Verify correct responses, or correct errors, or firm up a weak part, or reteach.Model-lead-test more examples (in a concept or rule) or steps (in a routine).Verify correct responses, or correct errors, or firm up a weak part, or reteach.Test all examples---delayed acquisition test.Verify correct responses, or correct errors, or firm up a weak part, or reteach. Review, firm up weak parts, reteach as needed.Slide63

11. Plan ways to scaffold instruction

; i.e., various kinds of assistance to help teachers communicate information, and to help students acquire, organize, retrieve, and apply information/knowledge.

 

Examples are stated objectives, highlighting, reminders and hints, wait time, big ideas, advance organizers (lesson and unit outlines, guided notes, concept/proposition maps, lists of steps to follow in routines), summaries,

diagrams, glossaries

.Slide64

12.

Begin instruction on a new lesson

with review, especially of knowledge elements and background knowledge relevant to the current instruction (pre-skills).

The teacher…

 

a. Corrects errors. “12 goes into 22 ONE time. How many times does 12 go into 22?

 

b. Firms weak

part-knowledge

. “Let’s practice drawing

best-fit

lines as part of finding the

slope of a line.”  c. Reteaches as needed. “Okay, let’s start over, with step 1.” …before introducing new material that requires this background knowledge.Slide65

13. Next in a lesson, frame the main business of the lesson

by stating the kind of new knowledge to be taught, the objectives (final performance and standards), and big ideas that will help students organize, remember or access, and comprehend the new knowledge, and connect new with prior knowledge.

 

a. Objectives should state what students

will

do---the final performance

.

They should not speak of know, appreciate,

demonstrate

, or understand.

 

b. Objectives should state

performance standards---the desired accuracy, rate, and completeness. For example, how many concepts per minute will be correctly identified from examples. Or, “I’ll say a word slowly; then you’ll say that word fast.”Slide66

14. Next in a lesson,

model

or present new information clearly and

focus

on the objectives.

The teacher:

a. Shares his or her thought processes. “First I…. Then I…”

(explicit instruction)

b. Uses clear wording. Uses consistent wording.

 

c. Repeats the information as needed.

 

d. Presents one step or item at a time in a list or routine, depending on how many steps or items

students can handle. Wording. Should be simple declarative statements (“This is…”; “We will…”); consistent wording in the same task and when teaching the same kind of knowledge (“New concept.”); focused on objective.Slide67

Examples of concepts, rules, and routines:

Clearly

show relevant

features.

Cover a varied range.

A

re juxtaposed

to show sameness across examples and difference between examples and

nonexamples

Are presented with frequent

and regular examples first; e.g., teach m, s, a, before x and

ing

; teach regular words (sad) before irregular worlds (said).

 The teacher repeats the model as needed. “Watch me again,….”Slide68

15. If students are not likely to learn from the model alone,

lead students

through the application of the new information

just modeled

.

Sometimes called “guided practice.” The

lead is not always needed, but is it best to err on the side of caution.

 

“Now we’ll work that problem together.”

 

Repeat until students are

firm.

 Slide69

16. Use pre-corrections, or reminders, to prevent errors when it is students’ turn to respond

.  

“Remember,

F…O…I…L

. Multiply the First numerals; then the Outside numbers; then the Inside numbers; then the Last numbers. You tell me which numbers we do first… Which ones we do outside…. Which ones we do inside…..; which ones we do last….”Slide70

Prevent errors, continued.

Also, check

students’ preparation

to take their turn.

Do they remember what to do?

“We always multiply numbers in the ones column first. What numbers do we multiply first?.... What numbers are in the ones column?... So what numbers are we going to multiply first?”Slide71

17. After

the model (and if used, the lead), give an immediate

acquisition test/check

to determine whether students learned the new information.

Test/check

every time new information is presented to be sure that students learned it.

This is especially important when teaching diverse learners, essential material, and difficult material. “Your turn to define our new concepts

.”

 

Ask

the question first or gives an instruction, before calling

on the

group or an individual. b. After calling on the group for a choral response, call on individual students, and make sure to call on students who have made errors or who in general have a harder time learning. “Now for individual turns.” Slide72

 

c. Give think time (quick count of 3) before calling on the group or an individual.

“Get ready….. Go.”

 

d. Use a signal to tell students to start; e.g., for example, tapping the book; saying “Go.”

 

e. Immediately verify correct responses. “Yes, you read those words the fast way.”

 

Repeat until students are firm.Slide73

18. Correct all errors and/or

firm

weak knowledge after the lead and/or test/check.

 

a. This is done in a matter of fact way and directed to the group.

 

b. Model. Teacher immediately gives the answer or demonstrates the step. “That word is

standing

.”

 

c. Lead. Students say the answer or do the step

with

the teacher. “Sound it out with me

.” [Use if model is not enough.] d. Test/check. Teacher asks the question or gives the problem step again. “Your turn. Sound it  out.”Slide74

Error correction, continued.

 

e. Verification. Specific praise. “Yes, that word is standing. Now you got it!”

 

f. Retest/starting over. “Start that sentence over.”

 

g. Delayed test. Teacher comes back and checks again. “Let’s review our words one more time. [When students approach the spot where they erred, “Careful. Don’t let it fool you.”]Slide75

19. If new material is a

concept (e.g., mitosis),

rule-relationship (e.g., how price varies with demand), or cognitive routine (e.g., a math algorithm), make sure to:

 

a.

Use

a wide and varied range of examples.

 

b.

Juxtapose

examples to reveal sameness. “These problems

look

different, but they are really

the same. Look at how they are the same…. Now you tell how they are the same…” c. Juxtapose examples and nonexamples to reveal difference. “These examples look the same, but they have an important difference. Look at how they are different… Now you tell how they are different.”   Slide76

d. When teaching routines (sequences of steps), use a sequence of formats, from more to less teacher-modeled. For example, when teaching students to read and answer questions about a passage,

(1) First read the passage, ask and answer your own questions, while students read along.

(2) Next read the passage and ask students questions.

(3) Next have students read the passage and then ask students questions.

(4) Finally, have students read the passage and then have students ask and answer the questions.Slide77

20. Give

a

delayed acquisition test/check

(calling on both the group as a whole and then individual students) to determine whether students learned the concept, rule relationship, or cognitive routine from

the set of the examples and

nonexamples

, or whether students remember the set of facts presented

.

“Ill give examples, and you name the concept.”

“Here are all the problems we worked on. Your turn to do them by yourself. Try not to make errors.”Slide78

The teacher then plans to

work

on

>> Generalization

of knowledge to new

examples.

>> Fluency.

>> Integration

of knowledge into larger

wholes.

>> Retention

.Slide79

21. Teach at a brisk pace, with enthusiasm,

by speaking more quickly; staying

on

task; using words whose meanings are clear; using the same instructional vocabulary from one task to another; cutting out unnecessary words.Slide80

22. End the lesson by

reviewing the lesson

(e.g., main things taught) and state how what was taught is relevant to next lessons.

 

The review:

 

a. States what was learned, how it built on what came before, and how it will be built on by next

lessons

.

“Next, we’ll use our facts to make a time line of the American Revolution.”

 

b. Has students once more reveal essential knowledge.

 

Correct all errors, firm up weak elements (part-firming), or reteach. Begin the next lesson by firming all weak skills.Slide81

23. Use frequent (every 5 to 10 lessons) curriculum-based progress monitoring assessments

(“mastery tests

,” “

checkouts) that assess acquisition and retention, generalization, integration, and fluency.

 

These mastery tests assess a sample:

a. Of

new material

that was taught in the previous 5 or 10 lessons; e.g., math problems, concepts. This assesses acquisition and retention.

 

b. Of new items that are similar to those that were taught; e.g., new math problems, or new examples of concepts. This assesses generalization.Slide82

Of

“a” and “b”

(acquisition and generalization items) to

see how accurate and fast students are.

Now do this set of problems fast. Be careful!!” Or, “Now read this passage quickly. Try not to make errors.” This measures fluency.

 

Use guidelines for deciding when students’ performance on assessment means that they (1) are firm and can move ahead; (2) need firming on certain knowledge; (3) need

reteaching

; or (4) need intensive instruction. Have plans and procedures for such remediation.

 Slide83
Slide84