/
Chapter  EIGENVALUES AND EIGENVECTORS Chapter  EIGENVALUES AND EIGENVECTORS

Chapter EIGENVALUES AND EIGENVECTORS - PDF document

cheryl-pisano
cheryl-pisano . @cheryl-pisano
Follow
464 views
Uploaded On 2014-12-14

Chapter EIGENVALUES AND EIGENVECTORS - PPT Presentation

1 Motivation We motivate the chapter on eigenvalues by discussing the equ ation ax 2 hxy by c where not all of a h b are zero The expression ax 2 hxy by is called quadratic form in and and we have the identity ax 2 hxy by x y a h h b AX where an ID: 24033

Motivation motivate the

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter EIGENVALUES AND EIGENVECTORS" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter6EIGENVALUESANDEIGENVECTORS6.1MotivationWemotivatethechapteroneigenvaluesbydiscussingtheequationax2+2hxy+by2=c;wherenotallofa;h;barezero.Theexpressionax2+2hxy+by2iscalledaquadraticforminxandyandwehavetheidentityax2+2hxy+by2=xyahhb¸·xy=XtAX;whereX=xyandA=ahhb.Aiscalledthematrixofthequadraticform.Wenowrotatethex;yaxesanticlockwisethroughradianstonewx1;y1axes.Theequationsdescribingtherotationofaxesarederivedasfollows:LetPhavecoordinates(x;y)relativetothex;yaxesandcoordinates(x1;y1)relativetothex1;y1axes.ThenreferringtoFigure6.1:115 116CHAPTER6.EIGENVALUESANDEIGENVECTORS - ¾ 6 ¯¯@ xyx1y1PQROFigure6.1:Rotatingtheaxes.x=OQ=OPcos(+)=OP(coscossinsin)=(OPcos)cos(OPsin)sin=ORcosPRsin=x1cosy1sinµ:Similarlyy=x1sin+y1cos.Wecancombinethesetransformationequationsintothesinglematrixequation:xy=cossinsincos¸·x1y1;orX=PY,whereX=xy;Y=x1y1andP=cossinsincos.WenotethatthecolumnsofPgivethedirectionsofthepositivex1andy1axes.AlsoPisanorthogonalmatrix{wehavePPt=I2andsoP1=Pt.ThematrixPhasthespecialpropertythatdetP=1.AmatrixofthetypeP=cossinsincosiscalledarotationmatrix.Weshallshowsoonthatany22realorthogonalmatrixwithdeterminant 6.1.MOTIVATION117equalto1isarotationmatrix.Wecanalsosolveforthenewcoordinatesintermsoftheoldones:x1y1=Y=PtX=cossinsincos¸·xy;sox1=xcos+ysinandy1=xsin+ycos.ThenXtAX=(PY)tA(PY)=Yt(PtAP)Y:Nowsuppose,aswelatershow,thatitispossibletochooseananglesothatPtAPisadiagonalmatrix,saydiag(1;¸2).ThenXtAX=x1y11002¸·x1y1=1x21+2y21(6.1)andrelativetothenewaxes,theequationax2+2hxy+by2=cbecomes1x21+2y21=c,whichisquiteeasytosketch.Thiscurveissymmetricalaboutthex1andy1axes,withP1andP2,therespectivecolumnsofP,givingthedirectionsoftheaxesofsymmetry.Alsoitcanbeveri¯edthatP1andP2satisfytheequationsAP1=1P1andAP2=2P2:Theseequationsforcearestrictionon1and2.ForifP1=u1v1,the¯rstequationbecomesahhb¸·u1v1=1u1v1ora1hhb1¸·u1v1=00:Hencewearedealingwithahomogeneoussystemoftwolinearequationsintwounknowns,havinganon{trivialsolution(u1;v1).Hencea1hhb1=0:Similarly,2satis¯esthesameequation.Inexpandedform,1and2satisfy2(a+b)+abh2=0:Thisequationhasrealroots=a+bp (a+b)24(abh2) 2=a+bp (ab)2+4h2 2(6.2)(Therootsaredistinctifa=borh=0.Thecasea=bandh=0needsnoinvestigation,asitgivesanequationofacircle.)Theequation2(a+b)+abh2=0iscalledtheeigenvalueequationofthematrixA. 118CHAPTER6.EIGENVALUESANDEIGENVECTORS6.2De¯nitionsandexamplesDEFINITION6.2.1(Eigenvalue,eigenvector)LetAbeacomplexsquarematrix.ThenifisacomplexnumberandXanon{zerocom-plexcolumnvectorsatisfyingAX=¸X,wecallXaneigenvectorofA,whileiscalledaneigenvalueofA.WealsosaythatXisaneigenvectorcorrespondingtotheeigenvalue.SointheaboveexampleP1andP2areeigenvectorscorrespondingto1and2,respectively.WeshallgiveanalgorithmwhichstartsfromtheeigenvaluesofA=ahhbandconstructsarotationmatrixPsuchthatPtAPisdiagonal.Asnotedabove,ifisaneigenvalueofannnmatrixA,withcorrespondingeigenvectorX,then(A¸In)X=0,withX=0,sodet(A¸In)=0andthereareatmostndistincteigenvaluesofA.Converselyifdet(A¸In)=0,then(A¸In)X=0hasanon{trivialsolutionXandsoisaneigenvalueofAwithXacorrespondingeigenvector.DEFINITION6.2.2(Characteristicpolynomial,equation)Thepolynomialdet(A¸In)iscalledthecharacteristicpolynomialofAandisoftendenotedbychA().Theequationdet(A¸In)=0iscalledthecharacteristicequationofA.HencetheeigenvaluesofAaretherootsofthecharacteristicpolynomialofA.Fora22matrixA=abcd,itiseasilyveri¯edthatthecharacter-isticpolynomialis2(traceA)+detA,wheretraceA=a+disthesumofthediagonalelementsofA.EXAMPLE6.2.1FindtheeigenvaluesofA=2112and¯ndalleigen-vectors.Solution.ThecharacteristicequationofAis24+3=0,or(1)(3)=0:Hence=1or3.Theeigenvectorequation(A¸In)X=0reducesto2112¸·xy=00; 6.2.DEFINITIONSANDEXAMPLES119or(2)x+y=0x+(2)y=0:Taking=1givesx+y=0x+y=0;whichhassolutionx=y;yarbitrary.Consequentlytheeigenvectorscorrespondingto=1arethevectorsyy,withy=0.Taking=3givesx+y=0xy=0;whichhassolutionx=y;yarbitrary.Consequentlytheeigenvectorscorre-spondingto=3arethevectorsyy,withy=0.Ournextresulthaswideapplicability:THEOREM6.2.1LetAbea22matrixhavingdistincteigenvalues1and2andcorrespondingeigenvectorsX1andX2.LetPbethematrixwhosecolumnsareX1andX2,respectively.ThenPisnon{singularandP1AP=1002:Proof.SupposeAX1=1X1andAX2=2X2.WeshowthatthesystemofhomogeneousequationsxX1+yX2=0hasonlythetrivialsolution.Thenbytheorem2.5.10thematrixP=[X1jX2]isnon{singular.SoassumexX1+yX2=0:(6.3)ThenA(xX1+yX2)=A0=0,sox(AX1)+y(AX2)=0.Hencex¸1X1+y¸2X2=0:(6.4) 120CHAPTER6.EIGENVALUESANDEIGENVECTORSMultiplyingequation6.3by1andsubtractingfromequation6.4gives(21)yX2=0:Hencey=0,as(21)=0andX2=0.Thenfromequation6.3,xX1=0andhencex=0.ThentheequationsAX1=1X1andAX2=2X2giveAP=A[X1jX2]=[AX1jAX2]=[1X1j2X2]=[X1jX2]1002=P1002;soP1AP=1002:EXAMPLE6.2.2LetA=2112bethematrixofexample6.2.1.ThenX1=11andX2=11areeigenvectorscorrespondingtoeigenvalues1and3,respectively.HenceifP=1111,wehaveP1AP=1003:Therearetwoimmediateapplicationsoftheorem6.2.1.The¯rstistothecalculationofAn:IfP1AP=diag(1;¸2),thenA=Pdiag(1;¸2)P1andAn=P1002P1n=P1002nP1=Pn100n2P1:Thesecondapplicationistosolvingasystemoflineardi®erentialequationsdx dt=ax+bydy dt=cx+dy;whereA=abcdisamatrixofrealorcomplexnumbersandxandyarefunctionsoft.Thesystemcanbewritteninmatrixformas_X=AX,whereX=xyand_X=_x_y=dx dtdy dt: 6.2.DEFINITIONSANDEXAMPLES121WemakethesubstitutionX=PY,whereY=x1y1.Thenx1andy1arealsofunctionsoftand_X=P_Y=AX=A(PY);so_Y=(P1AP)Y=1002Y:Hence_x1=1x1and_y1=2y1.Thesedi®erentialequationsarewell{knowntohavethesolutionsx1=x1(0)e1tandy1=y1(0)e2t,wherex1(0)isthevalueofx1whent=0.[Ifdx dt=kx,whereisaconstant,thend dtektx=kektx+ektdx dt=kektx+ektkx=0:Henceektxisconstant,soektx=ek0x(0)=x(0).Hencex=x(0)ekt.]Howeverx1(0)y1(0)=P1x(0)y(0),sothisdeterminesx1(0)andy1(0)intermsofx(0)andy(0).Henceultimatelyxandyaredeterminedasexplicitfunctionsoft,usingtheequationX=PY.EXAMPLE6.2.3LetA=2345.UsetheeigenvaluemethodtoderiveanexplicitformulaforAnandalsosolvethesystemofdi®erentialequationsdx dt=2x3ydy dt=4x5y;givenx=7andy=13whent=0.Solution.ThecharacteristicpolynomialofAis2+3+2whichhasdistinctroots1=1and2=2.We¯ndcorrespondingeigenvectorsX1=11andX2=34.HenceifP=1314,wehaveP1AP=diag(1;2).HenceAn=Pdiag(1;2)P1n=Pdiag((1)n;(2)n)P1=1314¸·(1)n00(2)n¸·4311 122CHAPTER6.EIGENVALUESANDEIGENVECTORS=(1)n1314¸·1002n¸·4311=(1)n132n142n¸·4311=(1)n432n3+32n442n3+42n:Tosolvethedi®erentialequationsystem,makethesubstitutionX=PY.Thenx=x1+3y1;y=x1+4y1.Thesystemthenbecomes_x1=x1_y1=2y1;sox1=x1(0)et;y1=y1(0)e2t.Nowx1(0)y1(0)=P1x(0)y(0)=4311¸·713=116;sox1=11etandy1=6e2t.Hencex=11et+3(6e2t)=11et+18e2t;y=11et+4(6e2t)=11et+24e2t:Foramorecomplicatedexamplewesolveasystemofinhomogeneousrecurrencerelations.EXAMPLE6.2.4Solvethesystemofrecurrencerelationsxn+1=2xnyn1yn+1=xn+2yn+2;giventhatx0=0andy0=1.Solution.ThesystemcanbewritteninmatrixformasXn+1=AXn+B;whereA=2112andB=12:ItisthenaneasyinductiontoprovethatXn=AnX0+(An1+¢¢¢+A+I2)B:(6.5) 6.2.DEFINITIONSANDEXAMPLES123AlsoitiseasytoverifybytheeigenvaluemethodthatAn=1 21+3n13n13n1+3n=1 2U+3n 2V;whereU=1111andV=1111.HenceAn1+¢¢¢+A+I2=n 2U+(3n1+¢¢¢+3+1) 2V=n 2U+(3n1) 4V:Thenequation6.5givesXn=1 2U+3n 2V¶·01+n 2U+(3n1) 4V¶·12;whichsimpli¯estoxnyn=(2n+13n)=4(2n5+3n)=4:Hencexn=(2n+13n)=4andyn=(2n5+3n)=4.REMARK6.2.1If(AI2)1existed(thatis,ifdet(AI2)=0,orequivalently,if1isnotaneigenvalueofA),thenwecouldhaveusedtheformulaAn1+¢¢¢+A+I2=(AnI2)(AI2)1:(6.6)HowevertheeigenvaluesofAare1and3intheaboveproblem,soformula6.6cannotbeusedthere.Ourdiscussionofeigenvaluesandeigenvectorshasbeenlimitedto22matrices.Thediscussionismorecomplicatedformatricesofsizegreaterthantwoandisbestlefttoasecondcourseinlinearalgebra.Neverthelessthefollowingresultisausefulgeneralizationoftheorem6.2.1.Thereaderisreferredto[28,page350]foraproof.THEOREM6.2.2LetAbeannnmatrixhavingdistincteigenvalues1;:::;¸nandcorrespondingeigenvectorsX1;:::;Xn.LetPbethematrixwhosecolumnsarerespectivelyX1;:::;Xn.ThenPisnon{singularandP1AP=2666410¢¢¢002¢¢¢0............00¢¢¢n37775: 124CHAPTER6.EIGENVALUESANDEIGENVECTORSAnotherusefulresultwhichcoversthecasewheretherearemultipleeigen-valuesisthefollowing(Thereaderisreferredto[28,pages351{352]foraproof):THEOREM6.2.3SupposethecharacteristicpolynomialofAhasthefac-torizationdet(¸InA)=(c1)n1¢¢¢(ct)nt;wherec1;:::;ctarethedistincteigenvaluesofA.Supposethatfori=1;:::;t,wehavenullity(ciInA)=ni.Foreachsuchi,chooseabasisXi1;:::;XinfortheeigenspaceN(ciInA).ThenthematrixP=[X11j¢¢¢jX1n1j¢¢¢jXt1j¢¢¢jXtnt]isnon{singularandP1APisthefollowingdiagonalmatrixP1AP=26664c1In10¢¢¢00c2In2¢¢¢0............00¢¢¢ctInt37775:(Thenotationmeansthatonthediagonaltherearen1elementsc1,followedbyn2elementsc2,...,ntelementsct.)6.3PROBLEMS1.LetA=4310.FindaninvertiblematrixPsuchthatP1AP=diag(1;3)andhenceprovethatAn=3n1 2A+33n 2I2:2.IfA=0:60:80:40:2,provethatAntendstoalimitingmatrix2=32=31=31=3asn!1. 6.3.PROBLEMS1253.Solvethesystemofdi®erentialequationsdx dt=3x2ydy dt=5x4y;givenx=13andy=22whent=0.[Answer:x=7et+6e2t;y=7et+15e2t.]4.Solvethesystemofrecurrencerelationsxn+1=3xnynyn+1=xn+3yn;giventhatx0=1andy0=2.[Answer:xn=2n1(32n);yn=2n1(3+2n).]5.LetA=abcdbearealorcomplexmatrixwithdistincteigenvalues1;¸2andcorrespondingeigenvectorsX1;X2.AlsoletP=[X1jX2].(a)Provethatthesystemofrecurrencerelationsxn+1=axn+bynyn+1=cxn+dynhasthesolutionxnyn=®¸n1X1+¯¸n2X2;whereandaredeterminedbytheequation=P1x0y0:(b)Provethatthesystemofdi®erentialequationsdx dt=ax+bydy dt=cx+dyhasthesolutionxy=®e1tX1+¯e2tX2; 126CHAPTER6.EIGENVALUESANDEIGENVECTORSwhereandaredeterminedbytheequation=P1x(0)y(0):6.LetA=a11a12a21a22bearealmatrixwithnon{realeigenvalues=a+iband =aib,withcorrespondingeigenvectorsX=U+iVand X=UiV,whereUandVarerealvectors.AlsoletPbetherealmatrixde¯nedbyP=[UjV].Finallyleta+ib=reiµ,wherer�0andisreal.(a)ProvethatAU=aUbVAV=bU+aV:(b)DeducethatP1AP=abba:(c)Provethatthesystemofrecurrencerelationsxn+1=a11xn+a12ynyn+1=a21xn+a22ynhasthesolutionxnyn=rnf(®U+¯V)cosnµ+(¯U®V)sinnµg;whereandaredeterminedbytheequation=P1x0y0:(d)Provethatthesystemofdi®erentialequationsdx dt=ax+bydy dt=cx+dy 6.3.PROBLEMS127hasthesolutionxy=eatf(®U+¯V)cosbt+(¯U®V)sinbtg;whereandaredeterminedbytheequation=P1x(0)y(0):[Hint:Letxy=Px1y1.Alsoletz=x1+iy1.Provethat_z=(aib)zanddeducethatx1+iy1=eat(+i¯)(cosbt+isinbt):Thenequaterealandimaginarypartstosolveforx1;y1andhencex;y.]7.(Thecaseofrepeatedeigenvalues.)LetA=abcdandsupposethatthecharacteristicpolynomialofA,2(a+d)+(adbc),hasarepeatedroot.AlsoassumethatA=®I2.LetB=A®I2.(i)Provethat(ad)2+4bc=0.(ii)ProvethatB2=0.(iii)ProvethatBX2=0forsomevectorX2;indeed,showthatX2canbetakentobe10or01.(iv)LetX1=BX2.ProvethatP=[X1jX2]isnon{singular,AX1=®X1andAX2=®X2+X1anddeducethatP1AP=10:8.Usethepreviousresulttosolvesystemofthedi®erentialequationsdx dt=4xydy dt=4x+8y; 128CHAPTER6.EIGENVALUESANDEIGENVECTORSgiventhatx=1=ywhent=0.[Tosolvethedi®erentialequationdx dtkx=f(t);kaconstant;multiplythroughoutbyekt,therebyconvertingtheleft{handsidetodx dt(ektx).][Answer:x=(13t)e6t;y=(1+6t)e6t.]9.LetA=241=21=201=41=41=21=41=41=235:(a)Verifythatdet(¸I3A),thecharacteristicpolynomialofA,isgivenby(1)(1 4):(b)Findanon{singularmatrixPsuchthatP1AP=diag(1;0;1 4).(c)ProvethatAn=1 32411111111135+1 34n2422411211235ifn1.10.LetA=2452225222535:(a)Verifythatdet(¸I3A),thecharacteristicpolynomialofA,isgivenby(3)2(9):(b)Findanon{singularmatrixPsuchthatP1AP=diag(3;3;9).