/
Source Source

Source - PDF document

danika-pritchard
danika-pritchard . @danika-pritchard
Follow
394 views
Uploaded On 2016-05-17

Source - PPT Presentation

02468101232101234j log2scalelog2EnergyExponential sourcePareto source a057 312 ExponentialPeriodic source01 04 16 64 256 1024 sec Figure1Energyplotexamples ID: 323940

024681012-3-2-101234j log2(scale)log2(Energy)Exponential source Pareto source

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Source" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Source­LevelIPPacketBursts:CausesandEffectsHaoJiangCollegeofComputingGeorgiaInstituteofTechnologyhjiang@cc.gatech.eduConstantinosDovrolisCollegeofComputingGeorgiaInstituteofTechnologydovrolis@cc.gatech.eduABSTRACTBysource-levelIPpacketburst,wemeanseveralIPpacketssentback-to-backfromthesourceofa\row.We rstiden-tifyseveralcausesofsource-levelbursts,includingTCP'sslowstart,idlerestart,windowadvancementafterlossre-covery,andsegmentationofapplicationmessagesintomulti-pleUDPpackets.Wethenshowthatthepresenceofpacketburstsinindividual\rowscanhaveamajorimpactonag-gregatetrac.Inparticular,suchburstscreatescalinginarangeoftimescaleswhichcorrespondstotheburstdura-tion.Uniform\spreading"ofburstsinthetimeaxisreducesthescalingexponentinshorttimescales(upto100-200ms)toalmostzero,meaningthattheaggregatetracbecomespracticallyuncorrelatedinthatrange.ThisresultprovidesaplausibleexplanationforthescalingbehaviorofInter-nettracinshorttimescales.Wealsoshowthatremovingpacketburstsfromindividual\rowsreducessigni cantlythetailoftheaggregatemarginaldistribution,anditimprovesqueueingperformance,especiallyinmoderateutilizations(50-85%).CategoriesandSubjectDescriptors:C.2.3[NetworkOperations]:TracmodelingandanalysisGeneralTerms:Measurement,PerformanceKeywords:scaling,networktrac,TCP,packetdisper-sion,packettrains,capacityestimation,correlationstruc-ture1.INTRODUCTIONBysource-levelIPpacketburst,wemeanseveralIPpack-etssentback-to-back,i.e.,atthemaximumpossiblerate,fromthesourceofa\row.Source-levelburstsintroducestrongcorrelationsinthepacketinterarrivalsofindividual\rows.Whichprotocolmechanismscreatesuchbursts?OverThisworkwassupportedbythe\Scienti cDiscoverythroughAdvancedComputing"(SciDAC)programofDOE(DE-FC02-01ER25467),andbyanequipmentdonationfromIntelCorporation.Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprotorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationontherstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecicpermissionand/orafee.IMC'03,October27–29,2003,MiamiBeach,Florida,USA.Copyright2003ACM1­58113­773­7/03/0010...$5.00.whichtimescalesdothecorrespondingcorrelationsextend?Signi cantresearche ortshavefocusedrecentlyonthecor-relationstructure,orscalingbehavior,ofaggregateIPtracinshorttimescales,typicallyuptoafewhundredsofmil-liseconds[1,2,3,4].Istheshorttimescalingbehaviorofaggregatetracrelatedtothepresenceofpacketburstsinindividual\rows?Howwillthecorrelationstructureofag-gregatetracchangeif\rowsdonotincludesuchbursts?Intermsofnetworkperformance,howwillthequeueingde-laysdecreaseifweremoveburstsfromindividual\rows,andinwhatloadconditionsissuchadecreasemostimportant?Thesearesomeofthequestionsthatweinvestigateinthispaper.Backgroundonscaling.Thekeytoolthatwerelyonisthewavelet-basedmultiresolutionanalysisdevelopedin[5]andimplementedin[6].Thisstatisticaltoolallowsustoobservethescalingbehaviorofatracprocessoveracertainrangeoftimescales.ConsiderareferencetimescaleT0,andletTj=2jT0forj=1,2,:::beincreasinglycoarsertimescales.Thesetimescales,orsimplyscales,partitionatractraceinconsecutiveandnon-overlappingtimeintervals.Iftjiisthei'thtimeintervalatscalej�0,thentjiconsistsoftheintervalstj12iandtj12i+1.LetXjibetheamountoftracintji,withXji=Xj12i+Xj12i+1.TheHaarwaveletcoecientsfdjigatscalejarede nedasdji=2j=2(Xj12iXj12i+1)(1)fori=1;:::Nj,whereNjisthenumberofwaveletcoe-cientsatscalej.TheenergyfunctionEjisde nedasEj=E[(dji)2]i(dji)2Nj(2)Anenergyplot,suchasFigure1,showsthelogarithmoftheenergyEjasafunctionofthescalej.ThemagnitudeofEjincreaseswiththevariabilityofthetracprocessXj1atscalej-1.Whatismoreimportantisthescalingbehavioroftheprocess,i.e.,thevariationofEjwithj.Foranexactlyself-similarprocess,suchasfractionalBrownianmotion(fBm)withHurstparameterH(0.51),itcanbeshownthatEj=E02j(2H1),andsotheenergyplotisastraightlinewithpositiveslope2H-1.Theslopeofanen-ergyplotisreferredtoasscalingexponentandisdenotedby .ForfBm, =2H-1isconstantacrossalltimescales,andsotheprocessissaidtoshowglobalscaling.Toillustratethedetectionofscalinginatracprocess,Figure1showstheenergyplotsforthreesynthetictraces,allofwhichhavethesamemeanpacketinterarrival(50ms). 024681012-3-2-101234j = log2(scale)log2(Energy)Exponential source,Pareto source, a=0.57 (3,12) Exponential/Periodic source0.1 0.4 1.6 6.4 25.6 102.4 (sec) Figure1:Energyplotexamples.AtthetopofthegraphweshowthetimescaleTjthatcorre-spondstoscalejatthex-axis(T0=25ms).The rsttraceisaPoissonprocess.Thesignatureofuncorrelatedexponen-tialinterarrivalsintheenergyplotisahorizontalstraightline( =0).Thesecondtraceisagainarenewalprocess,butthistimetheinterarrivalsfollowtheParetodistribu-tionwithshapeparameter =1.5.Thein nitevarianceoftheinterarrivalscreatesglobalscaling.Thesignatureofsuchglobalscalingintheenergyplotisastraightlineseg-mentwithpositiveslope( =2- )acrossalltimescales.Thethirdtraceisagainbasedonexponentialinterarrivals,butthistimeweintroduceastrongperiodicityatthe400mstimescale.Speci cally,aftereachexponentialinterarrivalwegenerate,withprobability0.75,anotherpacket400mslater(scale4).Thisperiodicitycausesa\dip"intheenergyplotatthe800mstimescale(scale5).Thisisbecauseape-riodicityreducesthevariabilityofthetracprocessatthecorrespondingtimescale.Notethatthedipappearsatscale5,insteadof4,becausetheenergyatscalejdependsonthetracprocessvariationsinscalej-1.Inpractice,networktraccanshowdi erentscalingbe-havioracrossdi erenttimescales.Iftheslopeoftheenergyplotis(roughly)constantoverarangeoftimescalesjtoj+k,wesaythatthetracprocessexhibitslocalscalinginthetimescalesTjtoTj+k.ThispaperfocusesonthescalingbehaviorofIPtracinshorttimescales,typicallyextendinguptoafewhundredsofmilliseconds.Relatedwork.Ourworkismostlyrelatedtopreviousre-searchonthescalingbehaviorofInternettracinshorttimescales.Oneofthe rstpapersthatreportedscalinginshorttimescalesatWANtraceswas[7].In[1,8],Feldmannetal.usedthewavelet-basedmultiresolutionanalysistech-niqueof[5]todetectandcharacterizethescalingbehaviorofInternettrac.TheauthorsshowedthatscalinginshorttimescalesisrelatedtotheTCPclosed-loop\rowcontrol,andthecuto between\short"and\long"timescalesis,roughly,theRTToftheTCPtransfers.Additionally,[1]providedempiricalevidencethatWANtraccanbemod-eledusingamultifractalmodel,similartothatdevelopedin[2].Morerecentwork,however,arguesthatthetracatatier-1ISPiswell-modeledasmonofractal,ratherthanmultifractal[3].[9]showedthatIPlayerscalingdoesnotdependontheTCP\rowarrivalprocess.Inafollow-upwork,[4]showedthatthethecorrelationstructureofaggregatetracinshorttimescalescanbecapturedbyaPoissonclusterpro-cessinwhichthepacketinterarrivalswithinindividualclus-tersfollowanoverdispersedGammadistribution.[3]intro-ducedtheconceptof\dense\rows"(i.e.,\rowswithburstsofdenselyclusteredpackets),andshowedthatitisthiskindof\rowsthatcreatescalinginshorttimescales.[10]showedthatscalingin netimescalescanhaveasigni cantimpactonqueueingperformance,especiallyinmoderateutiliza-tions,whilescalingincoarsertimescalesismoreimportantinheavyutilizations.Ourmainresult,connectingscalinginshorttimescaleswithpacketburstsfromindividual\rows,isinagreementwiththeresultsof[3,9,4,10],providingamorespeci cexplanationforthenatureandcausesofscal-ingbehaviorinaggregatetrac.Thetracesthatweusedinthisstudyarepubliclyavail-ableattheNLANR-MOATsite[11].Eachtracelastsfor90seconds.ThetracesthatweincludeinthispapercomefromOC-12linksattheMerit(MRA)andIndianaUni-versity(IND)Internet2GigaPOPs.Therestofthispaperisstructuredasfollows.x2givesseveralcausesofsource-levelburstsinIPtrac.x3showsthatpacketburstscreatescalinginarangeoftimescaleswhichcorrespondstotheburstduration.x4investigatesthee ectofburstsfromindividual\rowsonaggregatetracintermsofscalinginshorttimescales,marginaldistribution,andqueueingper-formance.TheAppendixdescribesapassivecapacityesti-mationmethodology,whichisrequiredforthedetectionofpacketburstsfromindividual\rowsatatrace.2.CAUSESOFSOURCE­LEVELBURSTSWehaveanalyzeddozensoftraces,attemptingtoidentifythemostcommoncausesofsource-levelbursts.Figure2showsninesuchcauses,oneforUDPandeightforTCP\rows.Unfortunately,ouranalysisisnotautomated,andsowecannotmakequantitativestatementsregardingtherelativefrequencyofeachcause.Webelieve,however,thatFigure2showsmost,orall,majorcauses.UDPmessagesegmentation.WhenaUDP-basedappli-cationsendsamessagethatislargerthanthepath'sMTU,themessageissegmentedbytheapplicationintomultipleUDPpackets,and/oritisfragmentedbytheoperatingsys-temintomultipleIPpackets.TheexampleshowninFig-ure2isfromaUDPvideo\rowwhichsendssixpacketsevery40ms.Slowstart.SlowstartincreasesthecongestionwindowbyoneMSSforeverynewACK.ThisrapidincreasecandoubletheburstlengthineachRTT.Intheexampleshown,thereceiverdoesnotuseDelayed-ACKs,andsotheburstsareonethirdlongerthannormally.LossrecoverywithFastRetransmit.TherecoveryofalostsegmentthroughFastRetransmitcan llina\hole"inthereceivingslidingwindow,andsoitcancausearapidadvancementoftheACKnumber.ThesendercanthensenduptoCW=2bytesback-to-back,whereCWisthecongestionwindowbeforetheloss.NotethattheconnectionofourexampledidnotdoFastRecovery,asnewsegmentswerenotsentinresponsetoduplicateACKsthatfollowedtheretransmission,duetocongestionwindowconstraints.1Unusedcongestionwindowincreases.Sometimes,mostlywithapplicationsthatinitiallyexchangecontrolmessages(suchasscp),thecongestionwindowincreaseswitheveryACK,butwithoutbeingusedbythesender.Then,when1FastRecoverycanreducetheburstsizeafteraretransmis-sion,ifnewsegmentscanbesentinresponsetoduplicateACKs. 0.060.080.10.120.140.160.180.20.22Time (second)0612182430Packet numberUDP packetUDP message segmentation18.218.318.418.518.618.718.818.91919.119.219.3Time (second)Sequence numberData packetACK packetSlow startSYN5.85.966.16.26.3Time (second)Sequence numberData packetACK packetLoss recovery with fast retransmissionFast retransmission0.40.60.811.21.41.6Time (second)Sequence numberData packetACK packetUnused congestion window increasesSYNTCP control segments0.60.811.21.41.61.8Time (second)0Sequence numberData packetACK packetACK compressionCompressed ACKs18.618.6518.718.7518.818.85Time (second)Sequence numberData packetACK packetCumulative or lossed ACKsAck for 6 MSS packets8.68.65Time (second)Sequence numberData packetACK packetACK reorderingReordered ACKs0.50.60.70.80.9Time (second)Sequence numberData packetACK packetBursty application234567Time (second)0Sequence numberData packetACK packetIdle restart timer bugFigure2:Majorcausesofsource-layerbursts.thesenderisreadytotransferalargemessageor le,itcansendalongbursttothenetwork.Ourexamplecomesfromthestartofanscpsession.ACKcompression.QueueinginthereversepathofaTCP\row,cancausethealmostsimultaneousarrivalofsuc-cessiveACKsatthesender.ThiscanbreakTCP'sself-clockingandcauselongbursts[12].CumulativeorlostACKs.Sometimesthereceivergen-eratesanACKformultiplereceivedsegments.Sucha\super-cumulative"ACKcantriggeraburstatthesender.Thesamee ectcanoccurifoneormoreACKsarelost.Inthatcase,the rstnon-lostACKwilltriggeraburst.Idlerestarttimerbug.ATCPsenderisrecommendedtouseslowstartandreturntotheinitialcongestionwindowafterithasnotsentanythingforthedurationoftheIdleRestarttimer(typicallyequaltoRTO)[13].Unfortunately,severaloperatingsystemsdonotsupport,ortheydonotimplementcorrectly,thisfeature[14].Asaresult,aTCPsendercansendalongburstafteranidletimeperiod.Burstyapplications.EveniftheIdleRestarttimerisimplementedcorrectly,itispossiblethattheapplicationitselfisbursty,meaningthatitwritesbytestotheTCPsend-socketsporadically.Ifthetimebetweenburstsissuf- cientlyshortsothatIdleRestartisnotactivated,TCP'sself-clockingbreaksandTCPcansendlongbursts.Packetreordering.ReorderingofACKsscramblesself-clockingandcantriggeraburstatthesender.Intheex-ampleshown,theout-of-orderACKacknowledgestenmoresegments,causingalargeburstatthesender.Datasegmentreorderingcanalsointerruptself-clockingandcausebursts[15].3.PACKETBURSTSANDSCALINGInthissection,weshowtheconnectionbetweensource-levelburstsandscaling,andidentifythetimescalesinwhichsuchburstscreatescalingbehavior.Considerasourcethatgeneratesasequenceofpackettrains.AtrainconsistsofNpackets,eachoflengthLbytes.IfthecapacityofthesourceisC,thedispersionofeachpacketinthetimeaxisisLC,whilethedispersionoftheentiretrainisNLC.SupposethattheinterarrivaltimeToffbetweensuccessivetrainsisexponentiallydistributed.WenextshowthatthistracprocessshowslocalscalinginthetimescalesbetweenLCandNLC.Figure3showstheautocorrelationfunctionandtheen-ergyplotforasynthetictracethatfollowsthepreviouspackettrainmodel.Inthistrace,wehavethatLC=4ms,N=16,NLC=64ms,andE[Toff]=2000ms.Consider rstthediscrete-timeprocessofpacketarrivalsinsuccessivenon-overlappingintervalsoflengthLC;thistimeseriestakesthevalues0and1.TheautocorrelationR()ofthisprocess,for=0;1;2;:::,ispositivewhen,duetothestronglycorrelatedinterarrivalswithinapackettrain.Forlargerlags&#xN000;N,R()isalmostzerobecausethecorrelationsbetweenpacketsofdi erenttrainsareweak(ToffNLC),andthetimeintervalbetweensuccessivetrainsisexponentiallydis-tributed.ObservenowtheenergyplotofFigure3.Thelinearly 0246810121416-9-8-7-6-5-4-3-2-101j = log2(scale)log2(Energy)L/C = 4ms, N = 16, NL/C = 64ms2 8 32 128 512 2048 8192 (ms) 081624324048566472808896Time (ms)-0.200.20.40.60.81Autocorrelation coefficient024681012141618202224LagFigure3:Autocorrelationandenergyplotofthepackettraintracmodel.increasingsegment,betweenscales4and8,representslocalscalinginthetimescalesfrom4ms(LC)to64ms(NLC).2Thestrongpositivecorrelationsinthelagsthatcorrespondtothetrainduration(=0;:::15)arere\rectedintheenergyplotaslocalscalinginthecorrespondingtimescales.Thescalingexponentisalmostzeroinlongertimescales(higherthan64ms),duetotheexponentialtraininterarrivals.Alsonotethatthenegativedipatscale-4,whichcorrespondstothepacketspacingL=C,isduetotheperiodicarrivalofanewpacketevery4msduringpackettrains.Thepreviousmodelmayseemtooarti cial,asallpack-etsappearinbursts.Source-levelburstscancreatescal-ingeveniftheyoccurlessfrequentlyhowever.Considerasourcewithtwostates:the\random"stateandthe\bursty"state.Intherandomstate,thesourcegeneratesexponen-tialinterarrivalswithameanof100ms.Intheburstystate,thesourcegeneratesasingletrainofN=16packets.Thetransitionprobabilityfromtherandomstatetotheburstystateis0.05,whilethetransitionprobabilityinthereversedirectionis1.Figure4showstheenergyplotforsuchasource,whenLC=1ms.Noticetheemergingscalingbehaviorbetweenscales2and6,whichcorrespondtothetimescales1msto16ms.Eventhoughthescalingexponentisnotcon-stantacrossthesetimescales,therangeinwhich ispositivematchestheextentofpacketbursts,fromLCtoNLC.02468101214161820-7-6-5-4-3-2-101j = log2(scale)log2(Energy)Exponential OFF, a=-0.014 (10, 17)Pareto OFF, a= 0.47 (14, 20)2 8 32 128 512 2048 8192 32768 131072 (ms) Figure4:Bi-scalingbehavior.Ontheotherhand,source-levelburstsdonotcontributetothescalingbehaviorinlongtimescales.Toillustratethispoint,considertheprevioustwo-statemodel,butnowsup-posethattherandomstategeneratesParetointerarrivalswith =1.5.Figure4showstheresultingenergyplot.Thein nitevarianceoftheParetointerarrivalscreatesscalingatlargetimescales.Thescalingexponentabovescale14isestimatedas 0.5,whichisconsistentwiththeshape2WeremindthereaderthattheenergyEjiscomputedbasedonthevariationsofthetracprocessatscalej-1.parameter =1.5.Thescalingbehaviorinshorttimescales,ontheotherhand,isduetopackettrains,anditremainsroughlythesameasinthecaseofexponentialinterarrivals.Thisisanexampleofbi-scalingbehavior,i.e.,di erentscal-ingexponentinshortvs.longtimescales,whichisoftenseenintheenergyplotofWANtraces[1].4.EFFECTSOFPACKETBURSTSInthissection,weshowthee ectofpacketburstsfromin-dividual\rowsinthreedi erent,butrelated,characteristicsofaggregateIPtrac:scalingbehaviorinshorttimescales,marginaldistribution,andqueueingperformance.Burstidenti cation.First,wedescribehowtoidentifypacketburstsfromindividual\rowsinatraceofaggregatetrac.ConsideraTCP\rowfwithsourceSf.ApackettraceiscollectedattheoutputofalinkTinf'spath.Intheappendix,wegiveamethodologyfortheestimationofthepre-tracecapacity~Cfof\rowf,i.e.,theminimumlinkcapacityalongthepathbetweenSfandT.Apacketburstfrom\rowfisde nedasasequenceofpacketsfromfthatarriveatTwitharatethatisroughly~Cf.ItisimportanttonotethatwecannotdeterminewhetherthesepacketsweresentfromSfback-to-back;wecanonlydeterminewhethertheyarriveatTback-to-back.Asource-levelburstwillbedetectedasapacketburstatT,butnoteverypacketburstatTwillbeasource-levelburst.Forthisreason,thissectionreferstothee ectsofpacketbursts,asopposedtosource-levelpacketbursts,fromindividual\rows.Inpractice,theratebetweensuccessivepacketsinaburstmay\ructuateaboveorbelow~CfbecauseofcrosstracqueueingatlinksbeforeT.So,werequirethefollowing,lessrestrictive,condition:asequenceofpacketsPf(i);:::Pf(i+j)from\rowfisapacketburstoflengthj+1,ifj�0isthemaximumpositivenumberthatsatis esthefollowingtwoconditions:i+j1k=iSf(k)f(i;j)�~Cfa(3)Sf(k)f(k;k+1)�~Cfbforallk=i;:::j1(4)whereSf(k)isthesizeofpacketPf(k),andf(m;n)isthedispersion(timedistance)betweenthestartofpacketsPf(m)andPf(n)atT(mn).If�a1and�b1,theseconditionsrequirethattheburst'saveragerateislargerthanafraction1=aof~Cf,andthattheratebetweensuccessivepacketsintheburstislargerthanafraction1=bof~Cf.ToillustratethefrequencyandlengthofpacketburstsinrealInternettrac,Figure5showstheCDFofburstlengthsforatracefromtheOC-12Meritlink(MRA).ThisgraphisderivedbasedonTCP\rowsforwhichwehaveapre-tracecapacityestimate(about83%oftheTCPbytesinthetrace).Weshowthreecurvesfordi erentparametersaandb.Notethattheburstlengthdistributiondoesnotdependsigni cantlyonthesetwoparameters;intherestofthispaperweusea=2andb=4.Alsonotethat40%ofthebytesinthistracearetransferredinburstsofatleastfourpackets,while10%ofthebytesareinburstsofmorethantwelvepackets.Burstremoval.Ifwecanidentifysource-levelbursts,wecanalsomodifyatracesothatweremovethosebursts.Weusethistechniquetoinvestigatehowwouldthestatistical 024681012141618Burst length (packets)00.10.20.30.40.50.60.70.80.91CDF (a=2, b=4)(a=3, b=5)(a=1.5, b=3)OC12 link: MRA-1028765523 (20:12 EST, 08/07/2002)Figure5:Parametersensitivityofburstidenti ca-tionalgorithm.pro leofthetracechange,ifindividual\rowsdidnotgen-eratepacketbursts.Sucha\semi-experimental"approachhasbeenalsofollowedin[9,10].SupposethataburstBf(k)of\rowfstartsattimetf(k),whilethe rstpacketoffafterthisburstappearsattimetf(k+).WeremovetheburstBf(k)byarti ciallyspacingthepacketsoftheburstuniformlybetweentf(k)andtf(k+).Notethatthepacketsof\rowfremainintheiroriginalor-derafterrespacingthebursts.Alsonotethatthisburstremovalprocedurecannotbeperformedon-linebyasourceorrouter,asitrequiresknowledgeoftf(k+)whenaburststarts.Also,itisnotequivalentto\rowshapingorpac-ing;theselatterapproacheswouldtransmitthepacketsofaburstata xedrate.Werefertotheresultingtraceasmanipulated,todistinguishitfromtheoriginaltrace.E ectofbursts.Figure6comparestheoriginalandma-nipulatedtraces,fromtwoOC-12links,intermsofthreeaspects:energyplotsandscalingbehavior,taildistribution,andqueueingperformance.Attheleft,weshowtheen-ergyplotofthetracesintimescalesthatextendfromlessthanamillisecondtoafewseconds.Noticethatbothtracesshowclearbi-scalingbehavior,withascalingexponentof0:35fortheMRAtraceand0:26fortheINDtraceinshorttimescales(lessthan25200ms).Thescalingexponentatlargetimescalesis0:99and0:90,respectively,butitsesti-mationislessaccurateduetotheshortdurationofthesetraces.Thekeyobservation,however,isthedi erencebe-tweentheoriginalandmanipulatedtraces:thescalingbehav-iorinshorttimescaleshasbeendramaticallyreduced,drop-pingthescalingexponenttoalmostzero.Thisimpliesthatremovingpacketburstswouldleadtoalmostuncorrelatedpacketarrivalsoverarangeofshorttimescalesthatextendsupto100-200ms.Asexpected,thescalingbehaviorinlongertimescaleshasnotbeena ected.ThemiddlegraphsofFigure6showthetaildistributionoftheamountofbytesinnon-overlapping10msintervals.Theaverageofthisdistributionis189KBfortheMRAtraceand32KBfortheINDtrace.Notethattheremovalofpacketburstsfromindividual\rowsreducessigni cantlytheprob-abilityofhavingburstsintheaggregatetrace.Thiswasexpected,asmostburstsattheaggregatetraceareduetoindividual\rows,insteadofdi erent\rows.Theremovalofburstsfromtheaggregatetracehintsthatthequeueingper-formancewouldalsoimprovesigni cantly.Indeed,therightgraphsofFigure6showthemaximumqueuesizethatwoulddevelopatalinkthatservicestheaggregatetrac,aswevarythelink'scapacity.Thereductioninthemaximumqueuesize,afterweremovethesource-levelbursts,issig-ni cantespeciallyinmoderateutilizations,between50%to85%.Thisresultagreeswiththe ndingsof[10].5.SUMMARYANDFUTUREWORKThispaperfocusedonthecausesande ectsofpacketburstsfromindividual\rowsinIPnetworks.Weshowedthatsuchburstscancreatescalinginshorttimescales,andin-creasedqueueingdelaysintracmultiplexers.Weidenti edseveralcausesforsource-levelbursts,investigatingthe\mi-croscopic"behavioroftheUDPandTCPprotocols.Someofthesecauses,suchastheimplementationoftheIdleRestarttimer,canbeeliminatedwithappropriatechangesintheTCPprotocolorimplementation.Someothercauses,how-ever,suchasthesegmentationofUDPmessagesinmultipleIPpackets,aremorefundamentalinnatureandtheymaynotbeavoidable.Eventhoughweidenti edaplausibleexplanationforthepresenceofscalinginshorttimescales,wedonotclaimthatsource-levelburstsaretheonlysuchexplanation.Inon-goingwork,weinvestigateotherimportantfactors,suchasthee ectofTCPself-clocking.Wealsostudythee ectofper-\rowshapingandTCPpacingonthecorrelationstruc-tureandmarginaldistributionsofaggregateIPtrac.6.REFERENCES[1]A.Feldmann,A.C.Gilbert,andW.Willinger,\DataNetworksasCascades:InvestigatingtheMultifractalNatureoftheInternetWANTrac,"inProceedingsofACMSIGCOMM,1998.[2]R.Riedi,M.S.Crouse,V.Ribeiro,andR.G.Baraniuk,\AMultifractalWaveletModelwithApplicationtoNetworkTrac,"IEEETransactionsonInformationTheory,vol.45,no.3,pp.992{1019,Apr.1999.[3]Z.-L.Zhang,V.Ribeiro,S.Moon,andC.Diot,\Small-TimeScalingbehaviorsofInternetbackbonetrac:AnEmpiricalStudy,"inProceedingsofIEEEINFOCOM,Apr.2003.[4]N.Hohn,D.Veitch,andP.Abry,\ClusterProcesses,aNaturalLanguageforNetworkTrac,"IEEETransactionsonSignalProcessing,specialissueon\SignalProcessinginNetworking",2003,Acceptedforpublication.[5]P.AbryandD.Veitch,\WaveletAnalysisofLong-RangeDependentTrac,"IEEETransactionsonInformationTheory,vol.44,no.1,pp.2{15,Jan.1998.[6]D.Veitch,\CodefortheEstimationofScalingExponents,"http://www.cubinlab.ee.mu.oz.au/darryl,July2001.[7]A.Feldmann,A.C.Gilbert,W.Willinger,andT.G.Kurtz,\TheChangingNatureofNetworkTrac:ScalingPhenomena,"ACMComputerCommunicationReview,Apr.1998.[8]A.Feldmann,A.C.Gilbert,P.Huang,andW.Willinger,\DynamicsofIPTrac:AStudyoftheRoleofVariabilityandTheImpactofControl,"inProceedingsofACMSIGCOMM,1999.[9]N.Hohn,D.Veitch,andP.Abry,\DoesfractalscalingattheIPleveldependonTCP\rowarrivalprocesses?,"inProceedingsInternetMeasurementWorkshop(IMW),Nov.2002.[10]A.Erramilli,O.Narayan,A.L.Neidhardt,andI.Saniee,\PerformanceImpactsofMulti-ScalinginWide-AreaTCP/IPTrac,"inProceedingsofIEEEINFOCOM,Apr.2000.[11]NLANRMOAT,\PassiveMeasurementandAnalysis,"http://pma.nlanr.net/PMA/,May2003.[12]J.C.Mogul,\ObservingTCPdynamicsinrealnetworks,"inProceedingsofACMSIGCOMM,Aug.1992.[13]M.Allman,V.Paxson,andW.Stevens,TCPCongestionControl,Apr.1999,IETFRFC2581.[14]A.Hughes,J.Touch,andJ.Heidemann,IssuesinTCPSlow-StartRestartAfterIdle,Mar.1998,IETFInternetDraft,draft-ietf-tcpimpl-restart-00.txt(expired).[15]J.C.R.Bennett,C.Partridge,andN.Shectman,\PacketReorderingisNotPathologicalNetworkBehavior,"IEEE/ACMTransactionsonNetworking,vol.7,no.6,pp.789{798,Dec.1999. 0246810121416212223242526272829j = log2(scale)log2(Energy)Original, a=0.351 (2, 9)Manipulated, a=0.019 (2, 9)0.4 1.6 6.4 25.6 102.4 409.6 1638.4 (ms) MRA-1028765523 20406080Traffic in 10ms (KB)0.0010.010.11�P[X x]OriginalManipulatedIND-1041854717 (07:05 EST, 01/06/2003)100150200250300350Traffic in 10ms (KB)0.0010.010.11�P[X x]OriginalManipulatedMRA-1028765523 (20:12 EST, 08/07/2002)0246810121416192021222324j = log2(scale)log2(Energy)Original, a=0.262 (4, 10)Manipulated, a=0.043 (4, 10)0.4 1.6 6.4 25.6 102.4 409.6 1638.4 (ms) IND-1041854717 0.50.60.70.8Utilization050100150200Maximum queue length (KB)OriginalManipulatedIND-1041854717 (07:05 EST, 01/06/2003)0.40.50.60.70.8Utilization050100150200Maximum queue length (KB)OriginalManipulatedMRA-1028765523 (20:12 EST, 08/07/2002)Figure6:E ectofsource-levelburstsonscaling,taildistribution,andqueueingperformance.[16]C.Dovrolis,P.Ramanathan,andD.Moore,\WhatdoPacketDispersionTechniquesMeasure?,"inProceedingsofIEEEINFOCOM,Apr.2001,pp.905{914.Appendix:PassivecapacityestimationTheidenti cationofpacketburstsfroma\rowfatatracepointTrequiresanestimateofthepre-tracecapacity~Cfof\rowf.Here,wesummarizeastatisticalmethodologythatestimates~CfforTCP\rows,usingthetimingofthe\row'sdatapackets.Themethodologyisbasedonthedispersion(timedistance)ofpacketpairs[16].ForaTCP\rowf,letSf(i)bethesizeofthei'thdatapacket,andf(i)bethedispersionmeasurementbetweendatapacketsiandi+1.Whenpacketsiandi+1areofthesamesize,wecomputeabandwidthsamplebi=Sf(i)=f(i).Packetswithdi erentsizestraversethenetworkwithdif-ferentper-hoptransmissionlatencies,andsotheycannotbeusedwiththepacketpairtechnique[16].Basedonthedelayed-ACKalgorithm,TCPreceiverstypicallyacknowl-edgepairsofpackets,forcingthesendertorespondtoeveryACKwithatleasttwoback-to-backpackets.So,wecanestimatethatroughly50%ofthedatapacketsweresentback-to-back,andthustheycanbeusedforcapacityes-timation.Therestofthepacketsweresentwithalargerdispersion,andsotheywillgivelowerbandwidthmeasure-ments.Basedonthisinsight,wesortthebandwidthsamplesof\rowf,andthendropthelower50%ofthem.Toesti-matethecapacityof\rowf,weemployahistogram-basedmethodtoidentifythestrongestmodeamongtheremain-ingbandwidthsamples;thecenterofthestrongestmodegivestheestimate~Cf.Thebinwidththatweuseis!=2(IRQ)K1=3(knownas\Freedman-Diaconisrule"),whereIRQandKistheinterquartilerangeandnumber,respectively,ofbandwidthsamples.Wehaveveri edthistechniquecom-paringitsestimateswithactivemeasurements.Theresultsarequitepositive,butduetospaceconstraintswedonotincludetheminthispaper.Figure7showsthedistributionofcapacityestimatesintwotraces.NotethattheCDFisplottedintermsofTCPbytes,ratherthanTCP\rows.Inthetopgraph,weseefourdominantcapacitiesat1.5Mbps,10Mbps,40Mbps,and100Mbps.Thesevaluescorrespondtothefollowingcom-monlinkbandwidths:T1,Ethernet,T3,andFastEther-net.ThebottomgraphshowsthecapacitydistributionfortheoutbounddirectionoftheATMOC-3linkatUniver-sityofAuckland,NewZealand.Thislinkisrate-limitedto4.048Mbpsatlayer-2.Weobservetwomodes,at3.38Mbpsand3.58Mbps,atlayer-3.Theformermodecorrespondsto576BIPpackets,whilethelattermodecorrespondsto1500BIPpackets.Thedi erenceisduetotheoverheadofAAL5encapsulation,whichdependsontheIPpacketsize.We nallynotethatourcapacityestimationmethodologycannotproduceanestimateforinteractive\rows,\rowsthatconsistonlypure-ACKs,and\rowsthatcarryjustafewdatapackets.Wewereable,however,toestimatethecapacityfor83%oftheTCPbytesintheMRA-1028765523trace,92%oftheTCPbytesintheIND-1041854717trace,and82%oftheTCPbytesintheAucklandtrace.101001000100001e+051e+06Capacity (Kbps)0102030405060708090100CDF in bytes (%)OC12 link: MRA-1028765523 (20:12 EST, 08/07/2002)30003100320033003400350036003700380039004000Capacity (Kbps)0102030405060708090100CDF in bytes (%)Univ. of Auckland OC3 link (outbound rate limit = 4.048 Mbps, 2001)MSS=576MSS=1500Figure7:Capacitydistributionintermsofbytesattwolinks.