/
Present Values and Accumulations NGUS S Present Values and Accumulations NGUS S

Present Values and Accumulations NGUS S - PDF document

debby-jeon
debby-jeon . @debby-jeon
Follow
380 views
Uploaded On 2015-04-22

Present Values and Accumulations NGUS S - PPT Presentation

M ACDONALD Volume 3 pp 13311336 In Encyclopedia Of Actuarial Science ISBN 0470846763 Edited by Jozef L Teugels and Bj57592rn Sundt John Wiley Sons Ltd Chichester 2004 brPage 2br Present Values and Accumulations Effective Interest Mo ID: 53564

ACDONALD Volume

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Present Values and Accumulations NGUS S" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

PresentValuesandAccumulationsS.MVolume3,pp.1331–1336EncyclopediaOfActuarialScience(ISBN0-470-84676-3)EditedbyJozefL.TeugelsandBjørnSundtJohnWiley&Sons,Ltd,Chichester,2004 PresentValuesandEffectiveInterestMoneyhasatimevalue;ifweinvest$1today,weexpecttogetbackmorethan$1atsomefuturetimeasarewardforlendingourmoneytosomeoneelsewhowilluseitproductively.Supposethatweinvest$1,andayearlaterwegetback$.Theamountinvestediscalledthe,andwesaythateffectiverateofinterestperyear.Evidently,thisdenitiondependsonthetimeunitwechoosetouse.Inarisklessworld,whichmaybewellapproximatedbythemarketforgoodqualitygovernmentbonds,willbecertain,butiftheinvestmentisrisky,uncertain,andourexpectationattheoutsettoreceivecanonlybeintheprobabilisticsense.Wecanregardtheaccumulationofinvestedmoneyineitheraretrospectiveorprospectiveway.Wemaytakeagivenamount,$say,tobeinvestednowandask,asabove,towhatamountwillitaccumulateyears?Or,wemaytakeagivenamount,$say,requiredinyears’time(tomeetsomeliabilityperhaps)andask,howmuchweshouldinvestnow,sothattheaccumulationinyears’timewillequal?Thelatterquantityiscalledthepresentvalueyears’time.Forexample,iftheeffectiveannualrateofinterestisperyear,thenweneedtoinvest$1now,inordertoreceive$1attheendofoneyear.Instandardactuarialnotation,isdenoted,andiscalledthediscountfactor.Itisimmediatelyclearthatinadeterministicsetting,accumulatingandtakingpresentvaluesareinverseoperations.Althoughatimeunitmustbeintroducedinthedenitionof,moneymaybeinvestedoverlongerorshorterperiods.First,consideranamountof$1tobeinvestedforcompleteyears,atarateperyeareffective.simpleinterest,onlytheamountoriginallyinvestedattractsinterestpaymentseachyear,andyearstheaccumulationis$ni)compoundinterest,interestisearnedeachyearontheamountoriginallyinvestedestalreadyearned,andafteryearstheaccumu-lationis$ni)0),anastuteinvestorwillturnsimpleinterestintocompoundinterestjustbywithdrawinghismoneyeachyearandinvestingitafresh,ifheisabletodoso;thereforetheuseofsimpleinterestisunusual,andunlessotherwisestated,interestisalwayscompound.Giveneffectiveinterestofperyear,itiseasilyseenthat$1investedforanylengthoftimewillaccumulateto$.Thisgivesustheruleforchangingthetimeunit;forexample,ifitwasmoreconvenienttousethemonthastimeunit,interestofperyeareffectivewouldbeequivalenttointerest1permontheffective,becauseChangingInterestRatesandtheForceofInterestTherateofinterestneednotbeconstant.Todealwithvariableinterestratesinthegreatestgener-ality,wedenetheaccumulationfactorA(t,s)betheamounttowhich$1investedattimeaccumulatebytime�st.Thecorrespondingdis-countfactorisV(t,s),theamountthatmustbeinvestedattimetoproduce$1attime,andclearlyV(t,s)/A(t,s).Thefactthatinterestiscom-poundisexpressedbytherelationA(t,s)A(t,r)A(r,s)trs.(forceofinterestattime,denoted(t),isdened(t) ,t),t) t=d ,t).(Therstequalitygivesanordinarydifferentialequa-tionfor,t),whichwithboundarycondition1hasthefollowingsolution:,t)(s),t)(s)Thespecialcaseofconstantinterestratesisnowgivenbysetting(t),aconstant,fromwhichweobtainthefollowingbasicrelationships:i).( PresentValuesandAccumulations ThetheoryofcashowsandtheiraccumulationsandpresentvalueshasbeenputinaverygeneralframeworkbyNorberg[10].NominalInterestInsomecases,interestmaybeexpressedasanannualamountpayableinequalinstalmentsduringtheyear;thentheannualrateofinterestiscalledForexample,underanominalrateofinterestof8%peryear,payablequarterly,interestpaymentsof2%oftheprincipalwouldbemadeattheendofeachquarter-year.AnominalrateofperyeartimesduringtheyearisdenotedThisisequivalenttoaneffectiverateofinterestofper1year,andbytheruleforchangingtimeunit,thisisequivalenttoeffectiveinterestof/m)1peryear.RatesofDiscountInsteadofsupposingthatinterestisalwayspaidattheendoftheyear(orothertimeunit),wecansup-posethatitispaidinadvance,atthestartoftheyear.Althoughthisisrarelyencounteredinprac-tice,forobviousreasons,itisimportantinactuarialmathematics.Theeffectiverateofdiscountperyear,,isdenedbyi/(,andreceiv-ingthisinadvanceisclearlyequivalenttoreceivinginarrears.WehavethesimplerelationNominalratesofdiscountmayalsobedened,exactlyasforinterest.AnnuitiesCertainWeoftenhavetodealwithmorethanonepayment,forexample,wemaybeinterestedintheaccumula-tionofregularpaymentsmadeintoabankaccount.Thisissimplydone;bothpresentvaluesandaccu-mulationsofmultiplepaymentscanbefoundbysummingthepresentvaluesoraccumulationsofeachindividualpayment.isaseriesofpaymentstobemadeatdenedtimesinthefuture.Thesimplestarelevelannuities,forexample,ofamount$1perannum.Thepaymentsmaybecontingentontheoccurrenceornonoccurrenceofafutureevent–forexample,aisanannuitythatispaidaslongastherecipientsurvives–butiftheyareguaranteedregard-lessofevents,theannuityiscalledanannuitycertainActuarialnotationextendstoannuitiescertainasfollows:Atemporaryannuitycertainisonepayableforalimitedterm.Thesimplestexampleisalevelannuityof$1peryear,payableattheendofeachofthenextyears.Itsaccumulationattheendyearsisdenoted n ,anditspresentvalueattheoutsetisdenoted n .Wehave n =nŠ1r=0(1+=(1+Š1 i)a n =nr=1vr=1Švn Therearesimplerecursiverelationshipsbetweenaccumulationsandpresentvaluesofannuitiescertainofsuccessiveterms,suchas n+1 i)s n+1 =v+ ,whichhaveveryintuitiveinterpretationsandcaneasilybeveriedAperpetuityisanannuitywithoutalimitedterm.Thepresentvalueofaperpetuityof$1peryear,payableinarrear,isdenoted  ,andbytakingthelimitinequation(5)wehave  .Theaccumulationofaperpetuityisundened.Anannuitymaybepayableinadvanceinsteadofinarrears,inwhichcaseitiscalledan.Theactuarialsymbolsforaccumulationsandpresentvaluesaremodiedbyplacingapairofdotsoverthe.Forexample,atemporaryannuity-dueof$1peryear,payableyearlyforyearswouldhaveaccumulation n yearsorpresentvalue n atoutset;aperpetuityof$1peryearpayableinadvancewouldhavepresentvalue  ;andsoon.Wehave n =nr=1(1+=(1+Š1 d)¨a n =nŠ1r=0vr=1Švn d)¨a  =1 d) PresentValuesandAccumulations Annuitiesarecommonlypayablemorefrequentlythanannually,saytimesperyear.Alevelannu-ityof$1peryear,payableinarrearstimesayearforyearshasaccumulationdenoted yearsandpresentvaluedenoted outset;thesymbolsforannuities-due,perpetu-ities,andsoonaremodiedsimilarly.Wehave =(1+Š1 ia =1Švn i¨s =(1+Š1 d¨a =1Švn Comparing,forexample,equations(5)and(10),wendconvenientrelationshipssuchas =i i n Inprecomputerdays,whenallcalculationsinvolvingaccumulationsandpresentvaluesofannuitieshadtobeperformedusingtablesandlogarithms,theserelationshipswereuseful.Itwasonlynecessarytotabulate n n ,andtheratiosi/ii/d,ateachannualrateofinterestneeded,andallvaluesof couldbefound.Inmoderntimesthistrickissuperuous,since,forexample, canbefoundfromrstprinciplesastheaccumulationofanannuityof,payableinarrearsfortimeunitsataneffectiverateofinterestof1pertimeunit.Accordingly,the isincreasinglyofhistoricalinterestonly.Afewspecialcasesofnonlevelannuitiesariseoftenenoughsothattheiraccumulationsandpresentvaluesareincludedintheactuarialnotation,namely,arithmeticallyinc-reasingannuities.Anannuitypayableannuallyyears,ofamount$inthethyear,hasaccumulationdenoted(Is) andpresentvalue(Ia) ifpayableinarrears,or ifpayableinadvance.(Is) =¨s n Šn (Ia) =¨a n Š i =¨s n Šn d =¨a n Š (Is) (andsoon)isavalidnotationforincreas-ingannuitiespayabletimesayear,butnotethatthepaymentsareofamount$1duringtherstyear,$2duringthesecondyearandsoon,thearithmeticallyincreasingsequence$1,$3/m,...atintervalsof1year.Thenotationforthelatteris (andsoon).Intheory,annuitiesorothercashowsmaybepayablecontinuouslyratherthandiscretely.Inpractice,thisisrarelyencounteredbutitmaybeanadequateapproximationtopaymentsmadedailyorweekly.Intheinternationalactuarialnotation,continuouspaymentisindicatedbyabarovertheannuitysymbol.Forexample,anannuityof$1peryearpayablecontinuouslyforhasaccumulation n andpresentvalue n .We n (n  a n =n0(1+tdt=n0eŠt=1Švn  a  =0(1+tdt=0eŠt=1 Increasingcontinuousannuitiesmayhavearateofpaymentthatincreasescontinuously,sothatattherateofpaymentis$peryear,orthatincreasesatdiscretetimepoints,forexample,arateofpaymentthatislevelat$peryearduringthyear.Theformerisindicatedbyabarthatextendsoverthe,thelatterbyabarthatdoesnot.Wehave =nŠ1r=01)r+1r(1+Štdt=¨s n Šn  PresentValuesandAccumulations =nŠ1r=01)r+1r(1+tdt=¨a n Š ( I =n0+Štdt= s n Šn ( I =n0+tdt= a n Š Muchoftheaboveactuarialnotationservedtosimplifycalculationsbeforewidespreadcomputingpowerbecameavailable,anditisclearthatitisnowatrivialtasktocalculateanyofthesepresentvaluesandaccumulations(exceptpossiblycontinuouscashows)withasimplespreadsheet;indeedrestrictionssuchasconstantinterestratesandregularpaymentsarenolongerimportant.Onlyunderveryparticularassumptionscananyoftheaboveactuarialformulaebeadaptedtononconstantinterestrates[16].Forfulltreatmentsofthemathematicsofinterestrates,see[8,9].AccumulationsandPresentValuesUnderTheremaybeuncertaintyaboutthetimingandamountoffuturecashows,and/ortherateofinterestatwhichtheymaybeaccumulatedordis-counted.Probabilisticmodelshavebeendevelopedthatattempttomodeleachoftheseseparatelyorincombination.Manyofthesemodelsaredescribedindetailinotherarticles;herewejustindicatesomeofthemajorlinesofdevelopment.Notethatwhenweadmituncertainty,presentval-uesandaccumulationsarenolongerequivalent,astheywereinthedeterministicmodel.Forexample,ifapaymentof$1nowwillaccumulatetoaran-domamount$inayear,Jensen’sinequality()showsthatE[1[1X].Infact,theonlywaytorestoreequalityistoconditionon,inotherwords,toremovealltheuncer-tainty.Financialinstitutionsareusuallyconcernedwithmanagingfutureuncertainty,sobothactuarialandnancialmathematicstendtostresspresentval-uesmuchmorethanaccumulations.Lifeinsurancecontractsdenepaymentsthatarecontingentuponthedeathorsurvivalofoneormoreindividuals.Thesimplestinsurancecon-tractssuchaswholelifeinsuranceguaranteetopayaxedamountondeath,whilethesim-plestannuitiesguaranteealevelamountthrough-outlife.Forsimplicity,wewillsupposethatcashowsarecontinuous,anddeathbenetsarepayableatthemomentofdeath.Wecan(a)rep-resentthefuturelifetimeofapersonnowagebytherandomvariable;and(b)assumeaxedrateofinterestofperyeareffective;andthenthepresentvalueof$1paidupondeathistherandomvariable,andthepresentvalueofanannuityof$1perannum,payablecontinu-ouslywhiletheylive,istherandomvariable Tx principleofequivalencestatesthattwoseriesofcontingentpaymentsthathaveequalexpectedpresentvaluescanbeequatedinvalue;thisisjustthelawoflargenumbers(Probability)appliedtorandompresentvalues.Forexample,inordertondtherateofpremium thatshouldbepaidthroughoutlifebythepersonnowage,weshouldsolve Px Tx Infact,theseexpectedvaluesareidenticaltothepresentvaluesofcontingentpaymentsobtainedbyregardingthelifetableasadeterministicmodelofmortality,andmanyofthemarerepre-sentedintheinternationalactuarialnotation.Forexample,E[ andE[ Tx ]= .Calcu-lationoftheseexpectedpresentvaluesrequiresasuitablelifetable(LifeTableLifeInsurance).Inthismodel,expectedpresentvaluesmaybethebasisofpricingandreserv-inginlifeinsuranceandpensions,butthehighermomentsanddistributionsofthepresentvaluesareofinterestforriskmanagement(see[15]foranearlyexample,whichisaninterestingreminderofjusthowradicallythescopeofactuarialsciencehasexpandedsincetheadventofcomputers).Formoreonthisapproachtolifeinsurancemath-ematics,see[1,2].Formorecomplicatedcontractsthanlifeinsurance,suchasdisabilityinsuranceorincomeprotectioninsurance,multiplestatemodelsweredevelopedandexpectedpresentvaluesofextre-melygeneralcontingentpaymentswereobtainedassolutionsofThiele’sdifferentialequationsLifeInsuranceMathematics)[4,5].Thisdevelopmentreacheditslogicalconclusionwhen PresentValuesandAccumulations lifehistorieswereformulatedasprocesses,inwhichsettingthefamiliarexpectedpresentvaluescouldagainbederived[6]aswellascomputationallytractableequationsforthehighermoments[13],anddistributions[3]ofpresentvalues.Allofclassicallifeinsurancemathematicsisgeneralizedveryelegantlyusingcountingprocesses[11,12],aninterestingexampleofJewell’sadvocacythatactuarialsciencewouldprogresswhenmodelswereformulatedintermsofthebasicrandomeventsinsteadoffocusingonexpectedvalues[7].Alternatively,orinaddition,wemayregardtheinterestratesasrandom(Interest-rateModeling),anddevelopaccumulationsandpresentvaluesfromthatpointofview.Undersuitabledistributionalassumptions,itmaybepossibletocalculateorapproximatemomentsanddistributionsofpresentvaluesofsimplecontingentpayments;forexample,[14]assumedthattheforceofinterestfollowedasecond-orderautoregressiveprocess,while[17]assumedthattherateofinterestwaslog-normal.TheapplicationofsuchstochasticassetmodelsAsset–LiabilityModeling)toactuarialproblemshassincebecomeextremelyimportant,butthederivationofexplicitexpressionsformomentsordistributionsofexpectedvaluesandaccumulationsisnotcommon.Complexassetmodelsmaybeappliedtocomplexmodelsoftheentireinsurancecompany,anditwouldbesurprisingifanalyticalresultscouldbefound;asaruleitishardlyworthwhiletolookforthem,instead,numericalmethodssuchasMonteCarlosimulationareused(StochasticSimulationReferences[1]Bowers,N.L.,Gerber,H.U.,Hickman,J.C.,Jones,D.A.&Nesbitt,C.J.(1986).ActuarialMathematics,TheSocietyofActuaries,Itasca,IL.[2]Gerber,H.U.(1990).LifeInsuranceMathematicsSpringer-Verlag,Berlin.[3]Hesselager,O.&Norberg,R.(1996).Onprobabilitydis-tributionsofpresentvaluesinlifeinsurance,Mathematics&Economics,35–42.[4]Hoem,J.M.(1969).MarkovchainmodelsinlifeBl¨atterderDeutschenGesellschaftf¨urVer-,91–107.[5]Hoem,J.M.(1988).TheversatilityoftheMarkovchainasatoolinthemathematicsoflifeinsurance,inTransactionsofthe23rdInternationalCongressofActuaries,Helsinki,,pp.171–202.[6]Hoem,J.M.&Aalen,O.O.(1978).Actuarialvaluesofpaymentstreams,ScandinavianActuarialJournal38–47.[7]Jewell,W.S.(1980).Generalizedmodelsoftheinsur-ancebusiness(lifeand/ornon-lifeinsurance),inTrans-actionsofthe21stInternationalCongressofActuaries,ZurichandLausanne,,pp.87–141.[8]Kellison,S.G.(1991).TheTheoryofInterest,2ndEdition,Irwin,BurrRidge,IL.[9]McCutcheon,J.J.&Scott,W.F.(1986).AnIntroductiontotheMathematicsofFinance,Heinemann,London.[10]Norberg,R.(1990).Paymentmeasures,interest,anddiscounting.Anaxiomaticapproachwithapplicationstoinsurance,ScandinavianActuarialJournal14–33.[11]Norberg,R.(1991).Reservesinlifeandpensioninsur-ScandinavianActuarialJournal3–24.[12]Norberg,R.(1992).Hattendorff’stheoremandThiele’sdifferentialequationgeneralized,ScandinavianActuar-ialJournal2–14.[13]Norberg,R.(1995).Differentialequationsformomentsofpresentvaluesinlifeinsurance,Insurance:Mathe-matics&Economics,171–180.[14]Pollard,J.H.(1971).Onuctuatinginterestrates,Bul-letindeL’AssociationRoyaledesActuairesBelges68–97.[15]Pollard,A.H.&Pollard,J.H.(1969).Astochasticapproachtoactuarialfunctions,JournaloftheInstituteofActuaries,79–113.[16]Stoodley,C.L.(1934).Theeffectofafallinginterestrateonthevaluesofcertainactuarialfunctions,TransactionsoftheFacultyofActuaries,137–175.[17]Waters,H.R.(1978).Themomentsanddistributionsofactuarialfunctions,JournaloftheInstituteofActuaries,61–75.SeealsoInterest-rateModelingInsuranceMathematicsS.M