/
1IntroductionThispaperdealswithisostaticframeworks,i.e.,pin-jointedbar 1IntroductionThispaperdealswithisostaticframeworks,i.e.,pin-jointedbar

1IntroductionThispaperdealswithisostaticframeworks,i.e.,pin-jointedbar - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
362 views
Uploaded On 2016-06-17

1IntroductionThispaperdealswithisostaticframeworks,i.e.,pin-jointedbar - PPT Presentation

whereAistheequilibriummatrixtisavectorofinternalbarforcestensionsandliesinavectorspaceofdimensionbfisanassignmentofexternallyappliedforcesonetoeachjointandasthereare3jpossibleforcecomponents ID: 365641

whereAistheequilibriummatrix;tisavectorofinternalbarforces(ten-sions) andliesinavectorspaceofdimensionb;fisanassignmentofex-ternallyappliedforces onetoeachjoint and asthereare3jpossibleforcecomponents

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "1IntroductionThispaperdealswithisostatic..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1IntroductionThispaperdealswithisostaticframeworks,i.e.,pin-jointedbarassemblies,commonlyreferredtoinengineeringliteratureastrussstructures,thatarebothkinematicallyandstaticallydeterminate.Suchsystemsareminimallyin nitesimallyrigidandmaximallystressfree:theycanbetermed`justrigid'.Ourultimategoalistoanswerthequestionposedinthetitle:whenaresymmetricpin-jointedframeworksisostatic?Asa rststep,thepresentpaperprovidesaseriesofnecessaryconditionsobeyedbyisostaticframeworksthatpossesssymmetry,andalsosummarizesconjecturesandinitialresultsonsucientconditions.Frameworksprovideamodelthatisusefulinapplicationsrangingfromcivilengineering(Graver,2001)andthestudyofgranularmaterials(Donevetal.,2004)tobiochemistry(Whiteley2005).Manyofthesemodelframeworkshavesymmetry.Inapplications,bothpracticalandtheoreticaladvantagesaccruewhentheframeworkisisostatic.Inanumberofapplications,pointsymmetryoftheframeworkappearsnaturally,anditisthereforeofinteresttounderstandtheimpactofsymmetryontherigidityoftheframework.Maxwell(1864)formulatedanecessaryconditionforin nitesimalrigidity,acountingrulefor3Dpin-jointedstructures,withanobviouscounterpartin2D;thesewerelaterre nedbyCalladine(1978).Laman(1970)providedsucientcriteriaforin nitesimalrigidityin2D,buttherearewellknownproblemsinextendingthisto3D(Graveretal.,1993).TheMaxwellcountingrule,anditsextensions,canbere-casttotakeaccountofsymmetry(FowlerandGuest,2000)usingthelanguageofpoint-grouprepresentations(see,e.g.,Bishop,1973).Thesymmetry-extendedMaxwellrulegivesadditionalinformationfromwhichithasoftenbeenpos-sibletodetectandexplain`hidden'mechanismsandstatesofself-stressincaseswherethestandardcountingrulesgiveinsucientinformation(FowlerandGuest,2002;2005,Schulze2008a).Similarsymmetryextensionshavebeenderivedforotherclassicalcountingrules(CeulemansandFowler,1991;GuestandFowler,2005).Inthepresentpaper,wewillshowthatthesymmetry-extendedMaxwellrulecanbeusedtoprovidenecessaryconditionsfora niteframeworkpos-sessingsymmetrytobestress-freeandin nitesimallyrigid,i.e.,isostatic.Itturnsoutthatsymmetricisostaticframeworksmustobeysomesimplystatedrestrictionsonthecountsofstructuralcomponentsthatare xedbyvarioussymmetries.For2Dsystems,theserestrictionsimplythatisostaticstruc-turesmusthavesymmetriesbelongingtooneofonlysixpointgroups.For3Dsystems,allpointgroupsarepossible,asconvextriangulatedpolyhedra(isostaticbythetheoremsofCauchyandDehn(Cauchy1813,Dehn1916))2 whereAistheequilibriummatrix;tisavectorofinternalbarforces(ten-sions),andliesinavectorspaceofdimensionb;fisanassignmentofex-ternallyappliedforces,onetoeachjoint,and,asthereare3jpossibleforcecomponents,fliesinavectorspaceofdimension3j(thisvectorspaceisthetensorproductofaj-dimensionalvectorspaceresultingfromassigningascalartoeachjoint,anda3-dimensionalvectorspaceinwhicha3Dforcevectorcanbede ned).HenceAisa3jbmatrix.Astateofself-stressisasolutiontoAt=0,i.e.,avectorinthenullspaceofA;ifAhasrankr,thedimensionofthisnullspaceiss=b�r:(2)Further,thecompatibilityrelationshipcanbewrittenasCd=ewhereCisthecompatibilitymatrix;eisavectorofin nitesimalbarexten-sions,andliesinavectorspaceofdimensionb;disavectorofin nitesimalnodaldisplacements,thereare3jpossiblenodaldisplacementsandsodliesinavectorspaceofdimension3j.HenceCisab3jmatrix.Infact,itisstraightforwardtoshow(seee.g.,PellegrinoandCalladine,1986)thatCisidenticaltoAT.ThematrixCiscloselyrelatedtotherigiditymatrixcommonlyusedinthemathematicalliterature:therigiditymatrixisformedbymultiplyingeachrowofCbythelengthofthecorrespondingbar.OfparticularrelevancehereisthatfactthattherigiditymatrixandChaveanidenticalnullspace.AmechanismisasolutiontoATd=0,i.e.,avectorintheleft-nullspaceofA,andthedimensionofthisspaceis3j�r.However,thisspacehasabasiscomprisedofminternalmechanismsand6rigid-bodymechanisms,andhencem+6=3j�r:(3)Eliminatingrfrom(2)and(3)recoversMaxwell'sequation(1).Theabovederivationassumesthatthesystemis3-dimensional,butitcanbeappliedto2-dimensionalframeworks,simplyreplacing3j�6by2j�3:m�s=2j�b�3:(4)2.2Symmetry-extendedcountingruleThescalarformula(1)hasbeenshown(FowlerandGuest,2000)tobepartofamoregeneralsymmetryversionofMaxwell'srule.ForaframeworkwithpointgroupsymmetryG,4 andjointsfreely(sothatnobarorjointismappedontoitselfbyanysymme-tryoperation).BothbandjmustthenbemultiplesofjGj,theorderofthegroup:b=bjGj,j=jjGj.Cansuchaframeworkbeisostatic?AnyisostaticframeworkobeysthescalarMaxwellrulewithm�s=0asanecessarycondition.Inthreedimensions,wehaveb=3j�6,andhence:3D:b=3j�6 jGj:Intwodimensions,wehaveb=2j�3,andhence:2D:b=2j�3 jGj:Asbandjareintegers,jGjisrestrictedtovalues1,2,3and6in3D,and1and3in2D.Immediatelywehavethatifthepointgrouporderisnotoneofthesespecialvalues,itisimpossibletoconstructanisostaticframeworkwithallstructuralcomponentsplacedfreely:anyisostaticframeworkwithjGj6=1;3(2D)orjGj6=1;2;3;6(3D)musthavesomecomponentsinspecialpositions(componentsthatareunshiftedbysomesymmetryoperation).IntheSchoen iesnotation(Bishop,1973),thepointgroupsoforders1,2,3and6arejGj=1:C1jGj=2:C2,Cs,CijGj=3:C3jGj=6:C3h,C3v,D3,S6Furtherrestrictionsfollowfromthesymmetry-adaptedMaxwellrules(5),(6).Inahypotheticalframeworkwhereallbarsandjointsareplacedfreely,thebarandjointrepresentationsare�(b)=b�reg;�(j)=j�regwhere�registheregularrepresentationofGwithtracejGjundertheidentityoperation,and0underallotheroperations.Therepresentations�xyzand�xyhavetrace3and2,respectively,undertheidentityoperation,andhenceequations(5)and(6)become3D:�(m)��(s)=3j�reg�b�reg��xyz��RxRyRz;2D:�(m)��(s)=2j�reg�b�reg��xy��Rz;whichcanbewrittenas,6 Setting�(m)��(s)tozeroin(5)and(6),classbyclass,willgiveuptokindependentnecessaryconditionsfortheframeworktobeisostatic.Wewillcarryoutthisprocedureonceandforallforallpointgroups,asthereisaverylimitedsetofpossibleoperationstoconsider.Thetwo-dimensionalandthree-dimensionalcaseswillbeconsideredseparately.3.1Two-dimensionalisostaticframeworksInthissectionwetreatthetwo-dimensionalcase:bars,joints,andtheiras-sociateddisplacementsareallcon nedtotheplane.(Notethatframeworksthatareisostaticintheplanemayhaveout-of-planemechanismswhencon-sideredin3-space.)Therelevantsymmetryoperationsare:theidentity(E),rotationby2=naboutapoint(Cn),andre ectioninaline().Thepos-siblegroupsarethegroupsCnandCnvforallnaturalnumbersn.CnisthecyclicgroupgeneratedbyCn,andCnvisgeneratedbyafCn;gpair.ThegroupC1visusuallycalledCs.Alltwo-dimensionalcasescanbetreatedinasinglecalculation,asshowninTable1.Eachentryinthetableisthetrace(character)oftheappropriaterepresentation(indicatedintheleftcolumn)ofthesymmetry(indicatedinthetopline).Charactersarecalculatedforfouroperations:wedistinguishC2fromtheCnoperationwithn�2.Eachlineinthetablerepresentsastageintheevaluationof(6).SimilartabularcalculationsarefoundinFowlerandGuest(2000)andsubsequentpapers.Totreatalltwo-dimensionalcasesinasinglecalculation,weneedanota-tionthatkeepstrackofthefateofstructuralcomponentsunderthevariousoperations,whichinturndependsonhowthejointsandbarsareplacedwithrespecttothesymmetryelements.ThenotationusedinTable1isasfollows.jisthetotalnumberofjoints;jcisthenumberofjointslyingonthepointofrotation(C�n2orC2)(notethat,asweareconsideringonlycaseswherealljointsaredistinct,jc=0or1);jisthenumberofjointslyingonagivenmirrorline;bisthetotalnumberofbars;b2isthenumberofbarsleftunshiftedbyaC2operation(seeFigure1(a)andnotethatCnwithn�2shiftsallbars);bisthenumberofbarsunshiftedbyagivenmirroroperation(seeFig-ure1(b):theunshiftedbarmayliein,orperpendicularto,themirrorline).8 (i)Trivially,all2Dframeworkshavetheidentityelementand(7)simplyrestatesthescalarMaxwellrule(4)withm�s=0.(ii)PresenceofaC2elementimposeslimitationsontheplacementofbarsandjoints.Asbothjcandb2mustbenon-negativeintegers,(8)hastheuniquesolutionb2=1,jc=0.Inotherwords,anisostatic2DframeworkwithaC2elementofsymmetryhasnojointonthepointofrotation,butexactlyonebarcentredatthatpoint.(iii)Similarly,presenceofamirrorlineimplies,by(9),thatb=1forthatline,butplacesnorestrictiononthenumberofjointsinthesameline,andhenceallowsthisbartolieeitherin,orperpendicularto,themirror.(iv)DeductionoftheconditionimposedbyarotationofhigherorderC�n2proceedsasfollows.Equation(10)with=2=nimplies(jc�1)cos2 n=1 2(11)andasjciseither0or1,thisimpliesthatjc=0andn=3.Thus,a2DisostaticframeworkcannothaveaCnrotationalelementwithn�3,andwheneitheraC2orC3rotationalelementispresent,nojointmaylieatthecentreofrotation.Insummary,a2Disostaticframeworkmayhaveonlysymmetryopera-tionsdrawnfromthelistfE;C2;C3;g,andhencethepossiblesymmetrygroupsGare6innumber:C1,C2,C3,Cs,C2v,C3v.Groupbygroup,theconditionsnecessaryfora2Dframeworktobeisostaticarethenasfollows.C1:b=2j�3.C2:b=2j�3withb2=1andjc=0,andasallotherbarsandjointsoccurinpairs,jisevenandbisodd.C3:b=2j�3withjc=0,andhencealljointsandbarsoccurinsetsof3.Cs:b=2j�3withb=1andallotherbarsoccurringinpairs.Symmetrydoesnotrestrictj.C2v:b=2j�3withjc=0andb2=b=1.Acentralbarliesinoneofthetwomirrorlines,andperpendiculartotheother.Anyadditionalbarsmustlieinthegeneralposition,andhenceoccurinsetsof4,withjointsinsetsof2and4.Hencebisoddandjiseven.10 Figure2:Examples,foreachofthepossiblegroups,ofsmall2Disostaticframeworks,withbarswhichareequivalentundersymmetrymarkedwiththesamesymbol:(a)C1;(b)C2;(c)C3;(d)CsC1v;(e)C2v;(f)C3v.Mirrorlinesareshowndashed,androtationaxesareindicatedbyacirculararrow.ForeachofCsandC3v,twoexamplesaregiven:(i)whereeachmirrorhasabarcenteredat,andperpendicularto,themirrorline;(ii)whereabarliesineachmirrorline.ForC2v,thebarlyingatthecentremustlieinonemirrorline,andperpendiculartotheother.12 Figure3:Possibleplacementofabarunshiftedbyaproperrotationaboutanaxis:(a)foranyCn2;(b)forC2alone.b2isthenumberofbarsunshiftedbytheC2rotation:suchbarsmustlieeitheralong,orperpendiculartoandcenteredon,theaxis(seeFig-ure3(a)and(b));bisthenumberofbarsunshiftedbyagivenmirroroperation(seeFig-ure5(a)and(b)).Again,eachofthecountsreferstoaparticularsymmetryelement,andso,forinstancethejointcountedinjcalsocontributestoj,jnandj.FromTable2,thesymmetrytreatmentofthe3DMaxwellequationre-ducestoscalarequationsofsixtypes.If�(m)��(s)=0,thenE:3j�b=6(12):b=j(13)i:3jc+bc=0(14)C2:j2+b2=2(15)C�n2:(jn�2)(2cos+1)=bn(16)S�n2:jc(2cos�1)=bnc(17)whereagivenequationapplieswhenthecorrespondingsymmetryoperationispresentinG.13 ECn6=2()C2iSn6=2() �(j) jjnj2jjcjc�xyz 32cos+1�11�32cos�1 =�(j)�xyz 3j(2cos+1)jn�j2j�3jc(2cos�1)jc��(b) �b�bn�b2�b�bc�bnc�(�xyz+�RxRyRz) �6�4cos�22000 =�(m)��(s) 3j�b�6(2cos+1)(jn�2)�bn�j2�b2+2j�b�3jc�bc(2cos�1)jc�bncTable2:Calculationsofcharactersforrepresentationsinthe3Dsymmetry-extendedMaxwellequation(5). 14 Someobservationson3Disostaticframeworks,arisingfromtheabove,are:(i)From(12),theframeworkmustsatisfythescalarMaxwellrule(1)withm�s=0.(ii)From(13),eachmirrorthatispresentcontainsthesamenumberofjointsasbarsthatareunshiftedunderre ectioninthatmirror.(iii)From(14),acentro-symmetricframeworkhasneitherajointnorabarcenteredattheinversioncentre.(iv)ForaC2axis,(15)hassolutions(j2;b2)=(2;0);(1;1);(0;2):Thecountb2referstobothbarsthatliealong,andthosethatlieperpendicularto,theaxis.However,ifabarweretoliealongtheC2axis,itwouldcontribute1tob2and2toj2thusgeneratingacontradictionof(15),sothatinfactallbarsincludedinb2mustlieperpendiculartotheaxis.(v)Equation(16)canbewritten,with=2=n,as(jn�2)2cos2 n+1=bnwithn�2.Thenon-negativeintegersolutionjn=2,bn=0,ispossibleforalln.Forn�2thefactor(2cos(2=n)+1)isrationalatn=3;4;6,butgeneratesafurtherdistinctsolutiononlyforn=3:n=30(j3�2)=b3andsohereb3=0,butj3isunrestricted.n=4j4�2=b4C4impliesC24=C2aboutthesameaxis,andhenceb4=0,andj4=j2=2.n=62(j6�2)=b6C6impliesC36=C2andC26=C3aboutthesameaxis,andhenceb6=b3=0,andj6=j3=j2=2.16 (a)(b)Figure6:Aregularoctahedron(a),andaconvexpolyhedron(b)generatedbyaddingatwistedoctahedrontoeveryfaceoftheoriginaloctahedron.Thepolyhedronin(b)hastherotationbutnotthere ectionsymmetriesofthepolyhedronin(a).Ifaframeworkisconstructedfromeitherpolyhedronbyplacingbarsalongedges,andjointsatvertices,theframeworkwillbeisostatic.AnexampleofthecappingofaregularoctahedronisshowninFigure6.Similartechniquescanbeappliedtocreatepolyhedraforanyofthepointgroups.Oneinterestingpossibilityarisesfromconsiderationofgroupsthatcon-tainC3axes.Equation(16)allowsanunlimitednumberofjoints,thoughnotbars,alonga3-foldsymmetryaxis.Thus,startingwithanisostaticframework,jointsmaybeaddedsymmetricallyalongthe3-foldaxes.TopreservetheMaxwellcount,eachadditionaljointisaccompaniedby3newbars.Thus,forinstance,wecan`cap'everyfaceofanicosahedrontogivethecompoundicosahedron-plus-dodecahedron(thesecondstellationoftheicosahedron),asillustratedinFigure7,andthisprocesscanbecontinuedadin nitumaddingapileof`hats'consistingofanewjoint,linkedtoallthreejointsofanoriginalicosahedralface(Figure8).Similarconstructionsstartingfromcubicandtrigonallysymmetricisostaticframeworkscanbeenvisaged.Additionofasingle`hat'toatriangleofaframeworkisoneoftheHennenbergmoves(Tay&Whiteley1985):changesthatcanbemadetoanisostaticframeworkwithoutintroducingextramechanismsorstatesofselfstress.18 (a)(b)Figure7:Anicosahedron(a),andthesecondstellationoftheicosahedron(b).Ifaframeworkisconstructedfromeitherpolyhedronbyplacingbarsalongedges,andjointsatvertices,theframeworkwillbeisostatic.Theframework(b)couldbeconstructedfromtheframework(a)by`capping'eachfaceoftheoriginalicosahedronpreservingtheC3vsitesymmetry. Figure8:Aseriesof`hats'addedsymmetricallyalonga3-foldaxisofanisostaticframeworkleavesthestructureisostatic.19 4SucientConditionsforIsostaticRealisa-tions.4.1Conditionsfortwo-dimensionalisostaticframeworksForaframeworkwithpoint-groupsymmetryGtheprevioussectionhaspro-videdsomenecessaryconditionsfortherealizationtobeisostatic.Theseconditionsincludedsomeover-allcountsonbarsandjoints,alongwithsub-countsonspecialclassesofbarsandjoints(barsonmirrorsorperpendiculartomirrors,barscenteredontheaxisofrotation,jointsonthecentreofrota-tionetc.).Here,assumingthattheframeworkisrealizedwiththejointsinacon gurationasgenericaspossible(subjecttothesymmetryconditions),weinvestigatewhethertheseconditionsaresucienttoguaranteethattheframeworkisisostatic.Thesimplestcaseistheidentitygroup(C1).Forthisbasicsituation,thekeyresultisLaman'sTheorem.Inthefollowing,wetakeG=fJ;Bgtode netheconnectivityoftheframework,whereJisthesetofjjointsandBthesetofbbars,andwetakeptode nethepositionsofallofthejointsin2D.Theorem1(Laman,1970)Foragenericcon gurationin2D,p,theframe-workG(p)isisostaticifandonlyifG=fJ;Bgsatis estheconditions:(i)b=2j�3;(ii)foranynon-emptysetofbarsB,whichcontactsjustthejointsinJ,withjBj=bandjJj=j,b2j�3.Ourgoalistoextendtheseresultstoothersymmetrygroups.Withtheappropriatede nitionof`generic'forsymmetrygroups(Schulze2008a),wecananticipatethatthenecessaryconditionsidenti edintheprevioussectionsforthecorrespondinggroupplustheLamanconditionidenti edinTheorem1,whichconsiderssubgraphsthatarenotnecessarilysymmetric,willbesuf- cient.Forthreeoftheplanesymmetrygroups,thishasbeencon rmed.Weusethepreviousnotationforthepointgroupsandtheidenti cationofspecialbarsandjoints,anddescribeacon gurationas`genericwithsym-metrygroupG'if,apartfromconditionsimposedbysymmetry,thepointsareinagenericposition(theconstraintsimposedbythelocalsitesymmetrymayremove0,1or2ofthetwobasicfreedomsofthepoint).Theorem2(Schulze2008b)Ifpisaplanecon gurationgenericwithsym-metrygroupG,andG(p)isaframeworkrealizedwiththesesymmetries,thenthefollowingnecessaryconditionsarealsosucientforG(p)tobeisostatic:20 3j0�b0�6=0,weneedtoasserttheconditionscorrespondingtothesym-metryoperationsinG0aswell.Theseconditionsareclearlynecessary,andforallre ections,half-turns,and6-foldrotationsinG0,theydonotfollowfromtheglobalconditionsontheentiregraph(astheywouldintheplane).SeeSchulze(2008c)fordetails.Alloftheaboveconditionscombined,however,arestillnotsucientfora3-dimensionalframeworkG(p)whichisgenericwithpointgroupsymmetryGtobeisostatic,becauseevenifG(p)satis esalloftheseconditions,thesymmetryimposedbyGmayforcepartsofG(p)tobe` attened'sothataself-stressofG(p)iscreated.Formoredetailsonhow` atness'causedbysymmetrygivesrisetoadditionalnecessaryconditionsfor3-dimensionalframeworkstobeisostatic,wereferthereadertoSchulze,Watson,andWhiteley(2008).ReferencesAltmann,S.L.andHerzig,P.,1994.Point-GroupTheoryTables.ClarendonPress,Oxford.Atkins,P.W.,Child,M.S.andPhillips,C.S.G.,1970.TablesforGroupThe-ory.OxfordUniversityPress,Oxford.Bishop,D.M.,1973.GroupTheoryandChemistry.ClarendonPress,Ox-ford.Calladine,C.R.,1978.BuckminsterFuller's`Tensegrity'structuresandClerkMaxwell'srulesfortheconstructionofsti frames.InternationalJournalofSolidsandStructures14,161{172.Cauchy,A.L.,1813.Recherchesurlespolyedres|premiermemoire,Jour-naldel'EcolePolytechnique9,66{86.Ceulemans,A.andFowler,P.W.,1991.ExtensionofEuler'stheoremtothesymmetrypropertiesofpolyhedra.Nature353,52{54.Dehn,M.,1916.UberdieStarreitkonvexerPolyeder,MathematischeAn-nalen77,466{473.DonevA.,Torquato,S.,Stillinger,F.H.andConnelly,R.,2004.Jamminginhardsphereanddiskpackings.JournalofAppliedPhysics95,989{999.Fowler,P.W.andGuest,S.D.,2000.AsymmetryextensionofMaxwell'sruleforrigidityofframes.InternationalJournalofSolidsandStructures37,1793{1804.22 necessaryconditionsforindependence,inpreparation.Tay,T-S.andWhiteley,W.,1985.GeneratingIsostaticFrameworks.Struc-turalTopology11,20{69.Whiteley,W.,1991Vertexsplittinginisostaticframeworks,StructuralTopol-ogy16,23{30.Whiteley,W.,2005.Countingoutthe exibilityofproteins.PhysicalBiology2,116{126.24

Related Contents


Next Show more