/
Lower bounds for  approximate membership Lower bounds for  approximate membership

Lower bounds for approximate membership - PowerPoint Presentation

joanne
joanne . @joanne
Follow
67 views
Uploaded On 2023-06-25

Lower bounds for approximate membership - PPT Presentation

dynamic data structures Shachar Lovett IAS Ely Porat Bar Ilan University Synergies in lower bounds June 2011 Information theoretic lower bounds Information theory is a powerful tool to prove lower bounds eg in data structures ID: 1003042

static bounds dynamic bloom bounds static bloom dynamic set mhash length array bitsquery xnm data filterss function 1001000000bit optimal

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Lower bounds for approximate membership" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1. Lower bounds for approximate membershipdynamic data structuresShachar LovettIASEly PoratBar-Ilan UniversitySynergies in lower bounds, June 2011

2. Information theoretic lower boundsInformation theory is a powerful tool to prove lower bounds, e.g. in data structuresStudy size of data structure (unlimited access)Static d.s.: pure information theoryDynamic d.s.: communication game

3. Talk overviewApproximate set membership problemBloom filters (simple near-optimal solution)Lower bounds – static caseNew dynamic lower bounds

4. Talk overviewApproximate set membership problemBloom filters (simple near-optimal solution)Lower bounds – static caseNew dynamic lower bounds

5. Approximate set membershipLarge universe URepresent subset S  UQuery: is x  S?Data structure representing S approximately:If x  S: answer YES alwaysIf x  S: answer NO with high probabilityWhy approximately? To save spaceUS~S

6. ApplicationsStorage (or communication) is costly, but a small false positive error can be toleratedOriginal applications (70’s): dictionaries, databases – Bloom filtersNowadays: mainly network applications

7. Talk overviewApproximate set membership problemBloom filters (simple near-optimal solution)Lower bounds – static caseNew dynamic lower bounds

8. Bloom filtersS={x1,x2,…,xn}0000000000Bit array of length mHash function h:U  {1,…,m}

9. Bloom filtersS={x1,x2,…,xn}0001000000Bit array of length mHash function h:U  {1,…,m}h(x1)=4

10. Bloom filtersS={x1,x2,…,xn}1001000000Bit array of length mHash function h:U  {1,…,m}h(x2)=1

11. Bloom filtersS={x1,x2,…,xn}1001000000Bit array of length mHash function h:U  {1,…,m}h(x3)=4

12. Bloom filtersS={x1,x2,…,xn}1001000000Bit array of length mHash function h:U  {1,…,m}Query: y  S?

13. Bloom filtersS={x1,x2,…,xn}1001000000Bit array of length mHash function h:U  {1,…,m}Query: y  S?h(y)=3

14. Bloom filtersS={x1,x2,…,xn}1001000000Bit array of length mHash function h:U  {1,…,m}Query: y  S? NOh(y)=3

15. Bloom filters: analysisS={x1,x2,…,xn}Query: y  S?If y  S: returns YES alwaysIf y  S: returns NO with probability Error ½: Error : (repetition)1001000000Bit array of length mhash

16. Known boundsUpper bounds (e.g. algorithms)Bloom filter:Improvements: [Porat-Matthias’03, Arbitman-Naor-Segev’10] Lower bounds:information theoretic:Can be matched by static data structures [Charles-Chellapilla’08,Dietzfelbinger-Pagh’08,Porat’08]This work: dynamic d.s.

17. Talk overviewApproximate set membership problemBloom filters (simple near-optimal solution)Lower bounds – static caseNew dynamic lower bounds

18. Static lower boundsStatic settings: insert + queryYao’s min-max principle: prove lower bound for deterministic data structure, randomized inputsInsert: x1,…,xnm bitsQuery: y

19. Static lower boundsDeterministic data structure: compression maps all sets to a small family of setsInput: random set Accept set: Properties:Small memory: No false negatives:Few false positives:Optimal setting:Insert: x1,…,xnm bitsQuery: y

20. Static lower boundsInsert: x1,…,xnm bitsQuery: yUSA(S) Set S, Represented byGoal: show #A(S) large

21. Static lower boundsProperties:Assume thatIf then General case: convexityInsert: x1,…,xnm bitsQuery: y

22. Talk overviewApproximate set membership problemBloom filters (simple near-optimal solution)Lower bounds – static caseNew dynamic lower bounds

23. Dynamic lower boundsBasic dynamic settings: two inserts + queryBreak inputs to k, n-k chunksInsert: x1,…,xkm bitsInsert: xk+1,…,xnm bitsQuery: y

24. Dynamiclower boundsAccepting sets:Properties: General approach: analyze size of accepting setsSets A(x1,…,xk) can’t be too small (covering)Sets A(A(x1,…,xk),xk+1,…,xn) can’t be too large (error)These yield the trivial lower bound again… Insert: x1,…,xkm bitsInsert: xk+1,…,xnm bitsQuery: y

25. Dynamiclower boundsMethod of typical inputsOn a typical input:A(x1,…,xk) not too smallA(A(x1,…,xk),xk+1,…,xn) not too largeInputs uncorrelated with data structure: Yields an improved lower bound  (note: “typical” can be 1% of inputs)Insert: x1,…,xkm bitsInsert: xk+1,…,xnm bitsQuery: y

26. Dynamic lower boundsInsert: x1,…,xkm bitsInsert: xk+1,…,xnm bitsQuery: yFunctional inequality:Free parameter: k – how to break inputOptimal choice:Extension: break input into more partsDoesn’t seem to help much

27. SummaryApproximate membership problemStatic algorithms match static information theoretic lower bound: This work: new dynamic information theoretic lower boundTHANK YOU!