/
Michael König Michael König

Michael König - PowerPoint Presentation

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
384 views
Uploaded On 2016-04-19

Michael König - PPT Presentation

Roger Wattenhofer On Local Fixing ETH Zurich Distributed Computing wwwdiscoethzch Motivation Motivation Motivation by Example Motivation by Example Motivation by Example Motivation by Example ID: 284610

count log mds motivation log count motivation mds mis mst leader flow spt fixed mvc lbound fixing ubound mwm model set maximal

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Michael König" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Michael KönigRoger Wattenhofer

On Local Fixing

ETH Zurich – Distributed Computing – www.disco.ethz.chSlide2

MotivationSlide3

MotivationSlide4

Motivation by ExampleSlide5

Motivation by ExampleSlide6

Motivation by ExampleSlide7

Motivation by ExampleSlide8

Motivation by ExampleSlide9

Motivation by ExampleSlide10

Motivation by ExampleSlide11

Motivation by ExampleSlide12

Model

Neighborhood model

Unbounded message sizes

Synchronous rounds

t = 0

t = 1

t = 2Slide13

2

1

Model (cont.)

We say a problem can be

fixed locally

if any solution can be fixed within O(1) rounds after a graph change.

(+e)

Edge Insertion

(-e)

Edge Deletion

(w → w')

Weight Change

(+v

1

)

(+v

*

)

Node Insertion

(-v

1

)

(-v

*

)

Node DeletionSlide14

Computation vs. Fixing

Computing solutions is very well-studied

Different “complexity classes” have been defined:

Γ

1

-Count

“local”

3

3

3

4

4

5

5

Maximal Matching

“polylog”

Spanning Tree

“global”

Previous work

on local fixing

1995: Maximal Independent Sets (MIS), by Kutten and Peleg

2007: O(1)-Maximum Weighted Matchings, by Lotker, Patt-Shamir and RosénSlide15

LBound UBound

+e -e w

w

'

+v

1

-v

1

+v

*

-v

*

Γ

1

-Count

Ω

(1) O(1)

o(n)-MDS

Ω

(1) O(1)

MIS

Ω

(√log(n)) O(log(n))

O(1)-MWM

Ω

(√log(n)) O(log(n))

MM

Ω

(√log(n)) O(log(n))

2-MVC

Ω

(√log(n)) O(log(n))

Γ

log(n)

-Count

Ω

(log(n)) O(log(n))

ST

Ω

(D) O(D)

MST

Ω

(D) O(D)

SPT

Ω

(D) O(D)

Flow

Ω

(D) O(D)

Leader Ω

(D) O(D)Count Ω

(D) O(D)

ProblemsSlide16

LBound UBound

+e -e w

w

'

+v

1

-v

1

+v

*

-v

*

Γ

1

-Count

Ω

(1) O(1)

o(n)-MDS

Ω

(1) O(1)

MIS

Ω

(√log(n)) O(log(n))

O(1)-MWM

Ω

(√log(n)) O(log(n))

MM

Ω

(√log(n)) O(log(n))

2-MVC

Ω

(√log(n)) O(log(n))

Γ

log(n)

-Count

Ω

(log(n)) O(log(n))

ST

Ω

(D) O(D)

MST

Ω

(D) O(D)

SPT

Ω

(D) O(D)

Flow

Ω

(D) O(D)

Leader Ω

(D) O(D)Count Ω

(D) O(D)

û û û û

û ûû û û û û û ûû û û û û û û

û û û û û û ûû û û û û ûû û û û û û

û û û û

û ûû û û û û û ûû û û û û û

û û û û û ûû û û û û ûû û

û û û û

û

û

û

û

û

û

ü ü ü ü ü

ü ü ü ü ü ü

ü ü ü ü ü ü

ü ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ü ü ü ü ü

ProblemsSlide17

ü

û ü

û

ü

û

û

ü

û û

ü

û

ü

ü

û

ü

ü û ü

û

û ü û û

ü û

üü û ü û ü

û

û ü

û ü û

ü

ü û ü

û

ü û

û

ü û û ü

û ü

ü

û ü

û ü ûû ü û

ü û ü

ü

û

ü û ü

û

ü

û ü

û

ü

û

û ü

û

ü

û üProblems

LBound UBound

+e -e w

→ w'

+v1 -v1

+v* -v*

Γ1

-Count Ω(1) O(1)

o(n)-MDS Ω(1) O(1)

MIS

Ω(√log(n)) O(log(n))

O(1)-MWM Ω

(√log(n)) O(log(n))MM

Ω

(√log(n)) O(log(n))

2-MVC

Ω

(√log(n)) O(log(n))

Γ

log(n)

-Count

Ω

(log(n)) O(log(n))

ST

Ω

(D) O(D)

MST

Ω

(D) O(D)

SPT

Ω

(D) O(D)

Flow

Ω

(D) O(D)

Leader

Ω

(D) O(D)

Count

Ω

(D) O(D)Slide18

ü

û ü

ü

ü

û

û û û

ü

ü

û û

û û û

ü

ü

û ûû û û ü

ü û û

ü

ü

ü ü ü ü

ü

ü

û û û û

ü

ü ü ü ü

ü

ü

ü

ü

ü

ü ü

ü

ü ü ü

ü

ü

ü

ü

ü ü

ü

ü

ü

û û û û û û

ü

ü

ü

ü

ü üû û û

û û ûResults

LBound UBound

+e -e w

→ w'

+v1 -v1

+v* -v*

Γ1

-Count Ω(1) O(1)

o(n)-MDS Ω(1) O(1)

MIS

Ω(√log(n)) O(log(n))

O(1)-MWM Ω

(√log(n)) O(log(n))

MM

Ω

(√log(n)) O(log(n))

2-MVC

Ω

(√log(n)) O(log(n))

Γ

log(n)

-Count

Ω

(log(n)) O(log(n))

ST

Ω

(D) O(D)

MST

Ω

(D) O(D)

SPT

Ω

(D) O(D)

Flow

Ω

(D) O(D)

Leader

Ω

(D) O(D)

Count

Ω

(D) O(D)Slide19

Maximal Independent Set (MIS)

?

?

?

?

?Slide20

“Last Will”: during settlingSlide21

“Last Will”: in action

!

!Slide22

o(n)-Minimum Dominating Set

We know algorithms which compute a o(n)-MDS in constant time

[Kuhn et al., 2005]

But we can construct o(n)-MDS solutions which cannot be fixed locally!

Recipe for a

k

-MDS which cannot be fixed within

c

steps:

x = ⌊(k - 1)(c + 1)⌋, y = 3c + 1

V = (a

1

, a

2

, …, a

x

, b

1

, b

2

, …, b

y

)

E = {(a

i

, b

1

) | 1 ≤ i ≤ x} ∪ {(b

i

, b

i+1

) | 1 ≤ i ≤ y}

a

3

b

1

b

4

b

2

b

3

b

5

b

6

b

7

a

2

a

1

a

4

a

5

For k = 2.8, c = 2, x = 5 and y = 7:

a

3

b

1

b

4

b

2

b

3

b

5

b

6

b

7

a

2

a

1

a

4

a

5Slide23

ConclusionTraditional distributed complexity classes don’t tell the whole story.A set of orthogonal “fixing complexity” classes may be interesting!Slide24

Thanks!Questions & Comments?Slide25

Motivation by Example