/
Richardson Extrapolation There are many approximation Richardson Extrapolation There are many approximation

Richardson Extrapolation There are many approximation - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
435 views
Uploaded On 2015-06-15

Richardson Extrapolation There are many approximation - PPT Presentation

Often the order of the error generated by the procedure is known In other words Kh 1 00 2 with being some known constant and K K K 00 being some other usually unknown constants For example might be the value at some 64257nal time for the solution ID: 86571

Often the order

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Richardson Extrapolation There are many ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

RichardsonExtrapolationTherearemanyapproximationproceduresinwhichone rstpicksastepsizehandthengeneratesanapproximationA(h)tosomedesiredquantityA.Oftentheorderoftheerrorgeneratedbytheprocedureisknown.InotherwordsA=A(h)+Khk+K0hk+1+K00hk+2+withkbeingsomeknownconstantandK;K0;K00;beingsomeother(usuallyunknown)constants.Forexample,Amightbethevaluey(tf)atsome naltimetfforthesolutiontoaninitialvalueproblemy0=f(t;y);y(t0)=y0.ThenA(h)mightbetheapproximationtoy(tf)producedbyEuler'smethodwithstepsizeh.Inthiscasek=1.IftheimprovedEuler'smethodisusedk=2.IfRunge-Kuttaisusedk=4.ThenotationO(hk+1)isconventionallyusedtostandfor\asumoftermsoforderhk+1andhigher".SotheaboveequationmaybewrittenA=A(h)+Khk+O(hk+1)(1)Ifweweretodropthe,hopefullytiny,termO(hk+1)fromthisequation,wewouldhaveonelinearequation,A=A(h)+Khk,inthetwounknownsA;K.Butthisisreallyadi erentequationforeachdi erentvalueofh.Wecangetasecondsuchequationjustbyusingadi erentstepsize.Thenthetwoequationsmaybesolved,yieldingapproximatevaluesofAandK.ThisapproximatevalueofAconstitutesanewimprovedapproximation,B(h),fortheexactA.Wedothisnow.Taking2ktimesA=A(h=2)+K(h=2)k+O(hk+1)(2)(notethat,inequations(1)and(2),thesymbol\O(hk+1)"isusedtostandfortwodi erentsumsoftermsoforderhk+1andhigher)andsubtractingequation(1)gives2k1A=2kA(h=2)A(h)+O(hk+1)A=2kA(h=2)A(h) 2k1+O(hk+1)c\rJoelFeldman.2000.Allrightsreserved.1 Henceifwede neB(h)=2kA(h=2)A(h) 2k1(3)thenA=B(h)+O(hk+1)(4)andwehavegeneratedanapproximationwhoseerrorisoforderk+1,onebetterthanA(h)'s.Onewidelyusednumericalintegrationalgorithm,calledRombergintegration,appliesthisformularepeatedlytothetrapezoidalrule.ExampleA=y(1)=64:897803wherey(t)obeysy(0)=1;y0=1t+4y.A(h)=approximatevaluefory(1)givenbyimprovedEulerwithstepsizeh.B(h)=2kA(h=2)A(h) 2k1withk=2.hA(h)%#B(h)%# .1 59.9387.620 64.587.4860 .05 63.4242.340 64.856.065120 .025 64.498.6280 64.8924.0083240 .0125 64.794.04160 The\%"columngivesthepercentageerrorandthe\#"columngivesthenumberofevalu-ationsoff(t;y)used.Similarly,bysubtractingequation(2)fromequation(1),wecan ndK.0=A(h)A(h=2)+Khk11 2k+O(hk+1)K=A(h=2)A(h) hk11 2k+O(h)OnceweknowKwecanestimatetheerrorinA(h=2)byE(h=2)=AA(h=2)=K(h=2)k+O(hk+1)=A(h=2)A(h) 2k1+O(hk+1)Ifthiserrorisunacceptablylarge,wecanuseE(h)=Khkc\rJoelFeldman.2000.Allrightsreserved.2 todetermineastepsizehthatwillgiveanacceptableerror.Thisisthebasisforanumberofalgorithmsthatincorporateautomaticstepsizecontrol.NotethatA(h=2)A(h) 2k1=B(h)A(h=2).OnecannotgetastillbetterguessforAbycombiningB(h)andE(h=2).Example.SupposethatwewishedtouseimprovedEulerto ndanumericalapproximationtoA=y(1),whereyisthesolutiontotheinitialvalueproblemy0=y2ty(0)=3Supposefurtherthatweareaimingforanerrorof106.IfwerunimprovedEulerwithstepsize0:2(5steps)andagainwithstepsize0:1(10steps)wegettheapproximatevaluesA(0:2)=6:70270816andA(0:1)=6:71408085.SinceimprovedEulerhask=2,TheseapproximatevaluesobeyA=A(0:2)+K(0:2)2+higherorder=6:70270816+K(0:2)2+higherorderA=A(0:1)+K(0:1)2+higherorder=6:71408085+K(0:1)2+higherorderSubtracting0=6:70270816+K(0:2)26:71408085K(0:1)2+higherorder0:01137269+0:03KsothatK0:01137269 0:03=0:38TheerrorforstepsizehisKh2+O(h3),sotoachieveanerrorof106weneedKh2+O(h3)=106)0:38h2106)hq 106 0:38=0:001622=1 616:5IfwerunimprovedEulerwithstepsize1 617wegettheapproximatevalueA(1 617)=6:71828064.Inthisillustrative,andpurelyarti cal,example,wecansolvetheintialvalueproblemexactly.Thesolutionisy(t)=2+2t+et,sothattheexactvalueofy(1)=6:71828183,toeightdecimalplaces,andtheerrorinA(1 62)is0:00000119.c\rJoelFeldman.2000.Allrightsreserved.3