PDF-The Fastest Deformable Part Model for Object Detection

Author : olivia-moreira | Published Date : 2015-05-26

Li Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China jjyanzleilywenszli

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "The Fastest Deformable Part Model for Ob..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

The Fastest Deformable Part Model for Object Detection: Transcript


Li Center for Biometrics and Security Research National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China jjyanzleilywenszli nlpriaaccn Abstract This paper solves the speed bottleneck of deformable part mod. Felzenszwalb University of Chicago pffcsuchicagoedu Ross B Girshick University of Chicago rbgcsuchicagoedu David McAllester TTI at Chicago mcallestertticedu Abstract We describe a general method for building cascade clas si64257ers from partbased de Divvala Alexei A Efros and Martial Hebert Robotics Institute Carnegie Mellon University Abstract The Deformable Parts Model DPM has recently emerged as a very useful and popular tool for tackling the intracategory diversity problem in object detecti Yan-Bin . Jia. . (with . Ph.D. students . Feng . Guo. . and . Huan Lin. ). Department of Computer Science. Iowa State University. Ames, IA 50010, USA. Rigid Body Grasping – Form Closure. The object has no degree of freedom (. De’angelo stewart. hypothesis. I think that the heavier object will fall the fastest than the lighter one. The weight of the heavier one will fall the fastest because heavier thing fall faster in gravity.. for Object Detection. Forrest Iandola, . Ning. Zhang, Ross . Girshick. , Trevor Darrell, and Kurt . Keutzer. Deformable Parts Model (DPM): state of the art algorithm for object detection [1]. Several attempts to accelerate multi-category DPM detection, such as [2] [3]. P. . Felzenszwalb. Object detection with deformable part-based models. Challenge: Generic object detection. Histograms of oriented gradients (HOG). Partition image into blocks and compute histogram of gradient orientations in each block. Object Localization. Goal: detect the location of an object within an image. Fully supervised:. Training data labeled with object category and ground truth bounding boxes. Weakly supervised:. Only object category is known, no location info. Fastest Improving State in the Nation. Graduation Rate. Class. of 2015. Annual Targets. Interim Graduation. Rate Goal: 2020. Long-term Graduation Rate Goal: 2022. The fastest improving state on graduation rate.. Pedro F. . Felzenszwalb. & Daniel P. . Huttenlocher. - A Discriminatively Trained, . Multiscale. , Deformable Part Model. Pedro . Felzenszwalb. , David . McAllester. Deva. . Ramanan. Presenter: . . Shape. . Retrieval. . with . Missing. . Parts. Organizers: . Emanuele . Rodolà. , Or Litany, Michael Bronstein, Alex Bronstein. Motivation. Existing retrieval techniques do not deal well with . Marco Pedersoli Andrea Vedaldi Jordi Gonzàlez. [Fischler Elschlager 1973]. Object detection. 2. 2. Addressing the computational bottleneck. branch-and-bound . [Blaschko Lampert 08, Lehmann et al. 09]. La gamme de thé MORPHEE vise toute générations recherchant le sommeil paisible tant désiré et non procuré par tout types de médicaments. Essentiellement composé de feuille de morphine, ce thé vous assurera d’un rétablissement digne d’un voyage sur . . SYFTET. Göteborgs universitet ska skapa en modern, lättanvänd och . effektiv webbmiljö med fokus på användarnas förväntningar.. 1. ETT UNIVERSITET – EN GEMENSAM WEBB. Innehåll som är intressant för de prioriterade målgrupperna samlas på ett ställe till exempel:. Yonggang Cui. 1. , Zoe N. Gastelum. 2. , Ray Ren. 1. , Michael R. Smith. 2. , . Yuewei. Lin. 1. , Maikael A. Thomas. 2. , . Shinjae. Yoo. 1. , Warren Stern. 1. 1 . Brookhaven National Laboratory, Upton, USA.

Download Document

Here is the link to download the presentation.
"The Fastest Deformable Part Model for Object Detection"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents