/
G Topics in Computer Graphics Lecture  Geometric Model G Topics in Computer Graphics Lecture  Geometric Model

G Topics in Computer Graphics Lecture Geometric Model - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
397 views
Uploaded On 2015-05-06

G Topics in Computer Graphics Lecture Geometric Model - PPT Presentation

3033002 Topics in Computer Graphics Lecture 03 Geometric Modeling New York University NURBS Spline Surfaces and Blossoming in Twodimensions Lecture 03 23 September 2002 Lecturer Prof Denis Zorin Scribe Zhihua ID: 62338

3033002 Topics Computer Graphics

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "G Topics in Computer Graphics Lecture G..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

G22.3033-002:TopicsinComputerGraphics:Lecture#03GeometricModelingNewYorkUniversity NURBS,SplineSurfacesandBlossominginTwo-dimensionsLecture#03:23September2002Lecturer:Prof.DenisZorinScribe:ZhihuaWangInthislecturewegeneralizethepolarformandblossomingandintroduceNURBS(non- G22.3033-002:Lecture#03 12345Figure1:ComparisonofparameterintervalsbetweenuniformandnonuniformB-splines.associatedwithnon-uniformlyspacedknots: .SeeFigure1.Infactsomeoftheknotsmaycoincidebutwewillnotconsiderthiscaseindetail.Theblossomingpyramidfornon-uniformsplinesisshowninFigure2. Figure2:BlossomingfornonuniformB-splines.ThemultiafÞnepropertyleadstothefollowingequationsforlinearinterpolationweights:fromwhichweget: t4t12=tt1 Generally,for titi2=tti WeobservethattheindicesofbaseparametersdifferbythedegreeofB-spline. ÓMulti-Óheremeansthatthepropertyholdsforeveryargument. G22.3033-002:Lecture#031.3Usageofnon-uniformsplinesOneofthemostimportantadvantagesofnon-uniformsplinesispossibilityofknotinsertion.Supposewewanttoaddacontrolpointwithoutchangingthecurve;inthisway,wecanaddsmallfeaturestoacurvegraduallywhilehavingcompletecontrolovertheshape.Foranon-uniformB-spline,theproblemcanbeturnedintoreplacingtheoldsequenceofparameters bynewsequenceofparameters   suchthat:whichwasevaluatedononii+1]isexactlythesameaspolynomialsononi ]and[ afterinsertion;seeFigure3.TheusereitherdeÞnesdirectly,or,morecom-monlyclicksonthepointofthecurveandthevalueofiscomputedbysolvinganequation   ,whereisthepointselectedbytheuser. Figure3:Addingnewknot.Asaresultofknotinsertion,onenewcontrolpointisadded,and2oldarereplacedbynew;thetwonewpolynomialsegmentsaredeÞnedbythefollowingtwogroupsofcontrolpoints:    Thenewcontrolpointsareobtainedusingblossomingasbefore.Eachnewcontrolpointisalinearcombinationoftwooldcontrolpoints;seeFigure41.4RationalsplinesTheÒRÓinNURBSstandsforrational.Rationalfunctionsareratiosoftwopolynomials.Themainreasonforhavingrationalsplinesistheneedtorepresentquadrics,i.e.curvesdeÞnedassolutionsofquadraticequations,e.g.thecircle.Moregenerally,rationalrepresentationaddsweightstothecontrolpoints,sothatsomecontrolpointsÒattractÓthecurvemorethanothers.Nowwediscusshowrationalfunctionshelptorepresentquadrics.Forexample,anarcofacirclecannotberepresentedinparametricformform ()()]ifpolynomialsareusedfor.Indeed,thenwehave,andsolvingforcoefÞcients,foranydegreewecaneasilygetbyinductionthatshouldbeconstants. G22.3033-002:Lecture#03 Afftectbypointsinin34]Figure4:Newcontrolpoints.Rationalfunctionshoweverallowustorepresentacirculararc:Considerthemostobviousparameterizationofacircle.Thiscanbewrittenas)=sin( )=cos( ,wherewereparameterizeusing=tan TheideaApointpointxy]ontheplanecanberepresentedbybyxyw]wherewistheweightandNowwecancomputeathree-dimensionalcurvesascontrolpointsandrepresentthecircleintheplaneas: 2SplineSurfaceSplineSurfacescanbedividedintotwocategories:tensorpatchesandtriangularpatches,accordingtothedomainonwhichitisdeÞned;seeFigure52.1TensorpatchsurfacesTensorpatchessurfaceisthesimplestextensionofcurves.Considertwocurvefunctionswithintervaldomains,respectively,,andasurfaceformedby.ItiscalledatensorproductsurfacewithdomainForexample,atensorBezierpatchisrepresentedas: G22.3033-002:Lecture#03 Figure5:Tensorpatchesandtriangularpatches.Sothereis16controlpointsand16basisfunctions.Wecandoblossominginasimilarway.SeeFigure6 v,uFigure6:BlossomingoftensorBezierpatch.AlthoughcombiningBeziercurvesegmentsintolongercurvesiseasy(justmakesurethatthecontrolpointsarealigned),itismoredifÞculttomatchBezierpatchesin3D.Tensor-productB-splinesurfacecanhavearbitrarynumberofcontrolpointsandtheirpolynomialpatchesareautomaticallyjointedsmoothly(forexampleforbicubicsurfaces,(i.e.cubicin)thepatcheesarejoinedwithcontinuity.Weuse+2)+2)controlpointstomatchedpatches.2.2TriangularpatchesFortriangularpolynomialpatchesthepolarformcanberepresentedasforeach;seeFigure7 G22.3033-002:Lecture#03 Figure7:Interpolationoftriangularpatch.Oneoftheadvantagesoftriangularisitslowerdegreeforgivensmoothness.Forexample,togetcontinuity,foratensor-productsplinesurfacewemustusebidegree3(totaldegree6),whileweonlyneedtotaldegree4fortriangularpatches.