/
Memory Management Memory Management

Memory Management - PowerPoint Presentation

stefany-barnette
stefany-barnette . @stefany-barnette
Follow
490 views
Uploaded On 2016-05-25

Memory Management - PPT Presentation

1 Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory As the process executed it accesses instructions and data from memory when the process terminates and its memory space is declared available ID: 333527

page memory process address memory page address process physical time segment user logical space fit table program hole partition

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Memory Management" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Memory Management

1Slide2

Address

Binding

The normal procedures is to select one of the processes in the input queue and to load that process into memory.

As the process executed, it accesses instructions and data from memory, when the process terminates, and its memory space is declared available.

Most systems allow a user process to reside in any part of the physical memory.Address space of the computer starts at 00000, addresses may be represented in different ways.

2Slide3

3Slide4

4

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

The linkage editor or loader will in turn bind these re-locatable addresses to absolute addresses.

Each binding is a mapping from one address space to another.Slide5

5

The binding instruction and data to memory address can be done at any step along the way:

Compile time

Load time

Execution timeSlide6

Compile Time

6

If you compile time where the process will reside in memory, the

absolute code

can be generated. For example, if you know a priori that a user process resides starting at location R, then the generated compile time will start at that location and extend up from there.

Absolute code

: - A code used when the addresses in a program are to be written in machine language exactly as they will appear when the instructions are executed by the control circuits. Slide7

Load time

7

If it is not known at compile time where the process will reside in memory, then the compiler must generate re-locatable code.

In this case, final binding is delayed until load time. If the starting address changes, we need only to reload the user code to incorporate this changed value.Slide8

Execution time

8

If the process can be moved during its execution from one memory segment to another, then binding must be delayed until run time.Slide9

Dynamic Loading

9

The entire program and data of a process must be in physical memory for the process to execute.

To obtain better memory-space utilization, we can use dynamic loading.

With dynamic loading, a routing is not loaded until it is called.

All routines are kept on disk in re-locatable load format. The main program is loaded into memory and is executed.

When routine needs to call another routine, the calling routine first checks to see whether the other routine has been loaded. Slide10

10

If not, the re-locatable linking loader is called to load the desired routine into memory and to update the program’s address tables to reflect this change.

The advantage of dynamic loading is that an unused routines is never load.

Useful when large amounts of code are needed to handle infrequently occurring cases

.Dynamic loading does not require support from operating system. The designer job is to design their program to take advantage of such method.Slide11

Logical vs. Physical Address Space

11

The concept of a logical

address space

that is bound to a separate physical

address space

is central to proper memory management

Logical address

– generated by the CPU; also referred to as

virtual address

Physical address

– address seen by the memory unit

The compile time and load-time address binding generate identical logical and physical address.

However, the execution-time address binding scheme results in differing logical and physical addresses.

We usually refer to the logical address as a virtual addressSlide12

Memory Management Unit (MMU)

12

The run-time mapping from virtual to physical addresses is done by a hardware called the memory-management unit(MMU).Slide13

Swapping

13

A process can be swapped temporarily out of memory to a backing store, and then brought back into memory for continued

execution.

For example, a round robin scheduling algorithm. When quantum expires, the memory manager will start to swap out the process that just finished, and to swap in another process to the memory space that has been freed.( see figure on next slide).Slide14

Schematic View of Swapping

14Slide15

15

Roll out, roll in

– swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out so higher-priority process can be loaded and

executed.

A process that is swapped out will swapped back into memory at same location that previously occupied.This restriction is dictated by the method of address binding.

If binding is done at assembly or load time, then process can not move at different location but binding is done at execution time then a process can be swapped into a different memory space.Slide16

16

Swapping requires a

backing store

. Fast

disk large enough to accommodate copies of all memory images for all users; must provide direct access to these memory images.Slide17

Contiguous Memory Allocation

17

The main memory must accommodate both the operating system and the various user processes.

Main memory usually into two partitions:

Resident operating system, usually held in low memory with interrupt vectorUser processes then held in high

memory.Slide18

Concept(Base & Limit Register)

18

To separate each program’s memory space, we need the ability to determine the range of legal addresses that the program may access, and to protect the memory outside the space.

We can provide this protection by using two registers. i.e.

Base register and

Limit register

.

The

base register

hold the smallest legal physical memory address; the

limit register

contains the size of range.

For example, if the base register holds 300040 and limit register is 120900 then the program can legally access all addresses from 300040 through 420940 inclusive.Slide19

19

This protection is accomplished by the CPU hardware comparing every address generated in user mode with registers.

Any attempt by a program executing in user node to access monitor memory or other users memory results in trap to the monitor, which treats the attempts as a fatal error.

This scheme prevents the user program from modifying the code or data structure of either the operating system or other users.Slide20

Memory Protection

20

Protecting the operating system from user processes, and protecting user processes from one another.

The relocation register contains the value of smallest physical address; the limit register contains the range of logical addresses.

With relocation and limit register , each logical address must be less than limit register.

The MMU maps the logical address dynamically by adding the value in the relocation register.Slide21

21

When the CPU scheduler selects a process for execution, the dispatcher load the relocation and limit registers with correct values.

Every address generated by the CPU is checked against these registers.

The relocation register scheme provides an effective way to allow the OS size to change dynamically.

For example, the OS contains code and buffer space for device drivers. If a device driver not in used, we do not need to keep the code and data in memory so we can able to allocate the space for another purpose.

Such code is some times called transient OS code.Slide22

22

CPU

MEMORY

Limit

Register

Relocation

Register

+

<

No

Logical

Address

Yes

Physical

AddressSlide23

Memory Allocation

23

One of simplest methods for memory allocation is to divide memory into several fixed-sized partitions.

Each partitions may contain exactly one process. In multi-partition method, when a partition is free, a process is selected from the input queue and loaded into the free partition. When process terminates, the partition will be available for another process.

The operating system keeps table indicating which parts of memory are available and which are occupied.Initially, all memory is available for user processes, and is considered as one large block of available memory, a hole

.Slide24

24

When process arrives, it search for a hole large enough, if it is found, we allocate only as much memory as is needed, keeping the rest of another processes.

A set of holes, of various sizes, is scattered throughout memory at any given time.

When process arrives and needs memory, system search this set of hole that is large enough for this process.

If the hole is too large, it is split into two parts: one part is allocated to the arriving process; the other is returned to the set of holes.When a process terminates, it release block of memory, which is then placed back in the set of holes.Slide25

25

This procedure is a particular instance of the general dynamic storage allocation problem, which is how to satisfy a request of size n form a list of free holes.

There are many solutions to this problem, which are listed below:

(1) First fit

(2) Best fit (3) Worst fitSlide26

26

First fit

: allocate the

first

hole that is big enough. Searching can start either at the beginning of the set of holes or where the previous first-fit search ended. We can stop searching as we find a free hole that is large enough.Best fit : allocate the smallest hole that is big enough. We must search the entire list, unless the list is kept ordered by size. This strategy produces the smallest leftover hole.Worst fit : allocate the largest hole. Again, we must search the entire list, unless it is sorted by size. This strategy produces the largest leftover hole, which may be more useful than the smaller leftover hole from a best fit approach.Slide27

27

Simulations have shown that both first fit and best fit are better than worst fit in terms of decreasing both time and storage utilization.

Neither first fit not best fit is clearly better in terms of storage utilization, but first fit is generally faster.

These algorithm, however, suffer from external fragmentation. As processes are loaded and removed from memory, the free space is broken into little pieces.

External fragmentation exists when enough total memory space exists to satisfy a request, but it not contiguous; storage is fragmented into a large number of small holes.Slide28

28Slide29

Example

29

Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), how would each of the First-fit, Best-fit, and Worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in order)?

Which algorithm makes the most efficient use of memory? Slide30

Answer

30

First Fit

212K is put in 500K partition

417K is put in 600K partition 112K is put in 288K partition (new partition 288K = 500K - 212K) 426K must wait Slide31

31

Best fit

212K is put in 300K partition

417K is put in 500K partition

112K is put in 200K partition 426K is put in 600K partition Worst fit212K is put in 600K partition 417K is put in 500K partition 112K is put in 388K partition 426K must wait Slide32

Fragmentation

32

Memory allocation can be internal as well as

external

Consider a multiple partition allocation scheme with a hole of 18,464 bytes.Suppose that the next process requests 18,462 bytes. If we allocate exactly the requested block, we are left with a hole of 2 bytes.The overhead to keep track of this hole will be substantially larger than the hole itself.

The general approach is to break the physical memory into fixed-sized blocks, and allocate memory in unit of block.

With this approach memory allocated to a process may be slightly larger than requested memory.Slide33

33

Internal fragmentation

: - occurs when memory is divided into fixed-sized partitions(e.g. page frames in main memory, physical block on disk). If a block of data is assigned to one or more partitions, then there may be wasted space in the last partition. This will occur if the last portion of data is smaller than the last partition.

External fragmentation

: - Occurs when memory is divided into variable-sized partitions corresponding to the blocks of data assigned to the memory(e.g. segments in main memory). As segments are moved into and out of the memory, gaps will occur between the occupied portions of memory.Slide34

34

There is a hole of 300K and 600K in multiple partition allocation scheme. Next process request for 700k of memory is free which satisfy the request but hole is not contiguous.

So there is an external fragmentation of memory. The selection of first fit versus best fit can affect the amount of fragmentation.

Depending on the total memory of memory storage and the average process size, external fragmentation may be either minor or major problem.Slide35

35

P50

Hole of 600k

Hole of 300k

OSSlide36

36

One technique for overcoming external fragmentation is

compaction

. From time to time, the operating system shifts the processes so that they are contiguous and all the free memory is together in one block.Slide37

37

Compaction

implies the need for a dynamic relocation capability. If relocation is static and done at assembly or load time, compaction can not be done. Relocation is done at execution time, the compaction is possible cost is the major factor for compaction.

The simplest algorithm of

compaction is, the process moves towards one side of memory. It produces one large hole of available memory. But cost of this scheme can be more.Slide38

Terms

38

Page

: in virtual storage, a fixed length block that has a virtual address and that is transferred as a unit between main memory and secondary memory.

Paging : - the transfer of pages between main memory and secondary memory.Physical address : - The absolute location of a unit of data in memory ( e.g. word or byte in main memory, block on secondary storage).Slide39

Paging

39

Physical memory is divided into fixed-size blocks called

frames

and the logical memory is divided into the fixed-size blocks called pages.The size of a page is same as that of frame.The key idean of this method is to place the pages of a process into the available frames of memory, whenever, this process is to be executed.

The hardware support for paging is illustrated in figure( next slide for image).

The page size is same as frame size.Slide40

40Slide41

Address Translation Scheme

41

Address generated by CPU is divided into:

Page number

(p) – used as an index into a page table which contains base address of each page in physical memoryPage offset (d)

– combined with base address to define the physical memory address that is sent to the memory unitSlide42

Example

42

Using a page size of 4 bytes and a physical memory of 32 bytes(8 pages).Slide43

43

We will see how the user’s view of memory can be mapped into physical memory.

Logical address 0 is page 0,

offeset

0. Indiexing into the page table, we find that page 0 is in frame 5.Thus , logical address 0 maps to physical address 20(=5 x 4 ) + 0 ).Logical address 3 (page 0, offset 3) maps to physical address 23(=(5 x 4 + 3).Logical address 4 is page 1, offset 0; according to page table, page 1 is mapped to frame 6. thus, logical address 4 maps to physical address 24(=6 x 4) + 0).Slide44

Hardware Support on Paging

44

To implement paging, the simplest method is to implement the page table as a set of registers.

These registers should be built with very high-speed logic to make the paging-address translation efficient.

Every access to memory must go through the paging map, so efficiency is major factor.

The CPU dispatcher reloads the registers, just as it reloads the other registers.

Instruction to load or modify the page-table registers are, of course, so that only OS can change the memory map.

However, the size of register is limited and the size of page table is usually large

Therefore, the page table is kept in main memorySlide45

Hardware Support on Paging

45

If we want to access location I, we must first index into page table, this requires one memory access

With this scheme,

TWO memory access are needed to access a byteThe standard solution is to use a special, small, fast cache, called

Translation look-aside buffer (TLB)

or

associative memorySlide46

TLB

46

The TLB is associative, high-speed memory. Each entry in the TLB consists of two parts: a key(or tag) and a value.

When the associative memory is presented with an item, it is compared with all keys simultaneously.

If the item is found, the corresponding values field is returned.

The search is fast; the hardware; however is expensive. Typically the number of entries inn a TLB is small, often numbering between 64 and 1,024 Slide47

TLB

47Slide48

TLB

48

If the page number is not in the TLB (TLB miss) a memory reference to the page table must be made.

In addition, we add the page number and frame number into TLB

If the TLB already full, the OS have to must select one for replacementSome TLBs allow entries to be

wire down

, meaning that they cannot be removed from the TLB, for example kernel

codesSlide49

TLB

49

The percentage of times that a particular page number is found in the TLN is called

hit ratio

If it takes 20 nanosecond to search the TLB and 100 nanosecond to access memory, then a mapped memory access takes 120 nanoseconds when the page number is in the TLB.

If

our hit ratio is 80%, the effective memory access time equal:

0.8

*(100+20) + 0.2 *(100+100)=140

nanosec

If our hit ratio is 98%, the effective memory access time equal:

0.98

*(100+20) + 0.02 *(100+100)=

122

nanosecSlide50

50

Disadvantage of TLB is that: if two pages use the same entry of the memory, only one of them can be remembered at once, if process is referencing both pages at same time. TLB does not work very well.Slide51

Segmentation

51

Since the user’s view of memory is not the same as the actual physical memory, segmentation helps user to view memory as a collection of variable-size segment

Segmentation is a memory management scheme that supports user view of

memory.Slide52

Segmentation

52

A program is a collection of segments. A segment is a logical unit such as:

main program,

procedure, function,method,object,

local variables, global variables,

common block,

stack,

symbol table, arraysSlide53

53Slide54

54

Segmentation is memory-management scheme that supports this user view of memory.

A logical address space is a collection of segments. Each segment has a name and length.

The addresses specify both the segment name and the offset within the segment.

The user therefor specifies each address by two quantities: a segment name and an offset.Slide55

55Slide56

Segmentation

56

The user specifies each address by two quantities: a segment name and an offset

<segment-number, offset>Compare with page scheme, user specifies only a single address, which is partitioned by hardware into a page number and an offset, all invisible to the programmerSlide57

Segment Hardware

57

Although the user can refer to objects in the program by a two-dimensional address, the actual physical address is still a one-dimensional sequence

Thus, we need to map the segment number

This mapping is effected by a segment table

In order to protect the memory space, each entry in segment table has a

segment base

and a

segment

limit

.Slide58

58

The segment base contains the starting physical address where the segment resides in memory, whereas the segment limit specifies the length of the segment.Slide59

59Slide60

60

A logical address consists of two parts: a segment number,

s

, and an offset into that segment,

d.The segment number is used as an index into the segment table. The offset

d

of the logical address must be between 0 and the segment limit.

If it is not, we trap to the Operating system. If this offset is legal, it is added to the segment base to produce the address in physical memory of the desired byte.

The segment table is thus essentially an array of base-limit register pairs.Slide61

Example of Segmentation

61Slide62

62

Consider the figure of previous slide.

We have five segments numbered from 0 to through 4. the segment are stored in physical memory as shown.

The segment table has a separate entry for each segment, giving the beginning address of the segment in physical memory(or base) and the length of that segment.Slide63

Difference between Segmentation and Paging

63

Segment is logical unit, visible to user’s program and is of arbitrary size.

A page is “physical unit”, invisible to the user’s program and is of fixed size.Slide64

Comparison of paging and segmentation

64Slide65

Virtual Memory

65

Virtual memory is a technique that allows the execution of processes that may not completely in memory.

One major advantages of this scheme is that programs can be larger than physical memory.

Further, virtual memory abstract main memory into an extremely large, uniform array of storage, separating logical memory as viewed by the user from physical memoryVirtual memory also allows processes to easily share files and address space, and it provides mechanism for process creation.Slide66

66

The ability to execute a program that is only partially in memory would consult many benefits.

A program would no longer be constrained by the amount of physical memory that is available. User would be able to write programs for an extremely large virtual-address space, simplifying the programming task.

Because each user program could take less physical memory, more program could be run at the same time, with a corresponding increase in CPU utilization and throughput, but with no increase in response time or turnaround time.

Less I/O would be needed to load or swap each user program into memory, so each user program would run faster.Slide67

Background

67

The instruction being executed must be in physical memory. The first approach to meeting this requirement is to place entire logical address space in physical memory.

Virtual memory

is the separation of user logical memory from physical memory. This separation allows an extremely large virtual memory to be provided for programmers when only a smaller physical memory is available.

Virtual memory makes the task of programming much easier, because the programmer no longer needs to worry about the amount of physical memory available.Slide68

Demand Paging

68

A demand paging is similar to a paging system with swapping.

Processes reside on secondary memory (i.e. disk). When we want to execute a process, we swap into memory.

Rather than swapping the entire process into memory, we use a lazy swapper

.

A lazy swapper never swaps a page into memory unless that page will be needed.

A swapper manipulate entire processes, whereas a pager concerned with the individual pages of a process.Slide69

Concept

69

When a process is to be swapped in , the pager guesses which pages will be used before the process is swapped out again.

Instead of swapping in a whole process, the pager bring only those necessary pages into memory.

It avoids reading into memory pages that will not be used anyway, decreasing the swap time and the amount of physical memory needed.Slide70

Transfer of a Paged Memory to Contiguous Disk Space

70Slide71

71

With this scheme, we need some form of hardware support to distinguish between those pages that are in memory and those pages that are one the disk.

The

valid-invalid

bit scheme can be used for this purpose.When the bit is set to “valid”

, this value indicates that the associated page is both legal and in memory.

If the bit is set to

“invalid”

, this value indicates that the page either is not valid( that is, not in the logical address space of the process), or is valid but is currently on the disk.Slide72

72

The page-table entry for a page that is brought into memory as usual, but the page-table entry for a page that is not currently in memory is simply marked invalid, or contains the address of the page on disk. This situation is shown in next slide.Slide73

Page Table When Some Pages Are Not in Main Memory

73Slide74

74

If

the process tries to access a page that was not brought into memory? Access to a page marked invalid causes a

page-fault trap

.The procedure for handling this page fault is straightforward. See next slide for figure.Slide75

Steps in Handling a Page Fault

75Slide76

76

We check an internal table for this process, to determine whether the reference was a valid or invalid memory access.

If the reference was invalid, we terminate the process. If it was valid, but we have not yet brought in that page, we now page it in.

We find a free frame.

We schedule a disk operation to read the desired page into the newly allocated frame.

When the disk read is complete, we modify the internal table kept with the process and the page table to indicate that page is now in memory.

We restart the instruction that was interrupted by the illegal address trap.Slide77

Page Replacement

77

Over-allocation demonstrates itself as follows. While a user process is executing, a page fault occurs.

The hardware traps to the operating system, which checks its internal tables to see that this page fault is genuine one rather than an illegal memory access.

The operating system determines where the desired page is residing on the disk, but then finds that there are no free frames on the free frame list.

All memory is in use( see next slide for figure)Slide78

Need For Page Replacement

78Slide79

79

Reference String

: - we evaluate an algorithm by running it on a particular string of memory and computing the number of page faults. The string of memory reference is called a

reference string

.Slide80

FIFO Page replacement

80

A FIFO replacement algorithm associates with each page the time when that page was brought into memory.

When a page must be replaced, the oldest page is chosen.

We replace the page at the head of the queue. When a page is brought into memory, we insert it at the tail of the queue.

FIFO page replacement algorithm is easy to understand and program. However, its performance is not always good.Slide81

81

Let us consider the following string

0,1,2,3,0,1,2,3,0,1,2,3,4,5,6,7

Belady’s

anomaly:For some page replacement algorithms, the page fault rate may increase as the number of allocated frames increase. FIFO page replacement algorithm may space this problem.Slide82

82Slide83

LRU Page Replacement

83

LRU replacement associates with each page the time of that page the time of that page’s last use.

When a page must be replaced, LRU choose that page that has not been used for the longest period of time.

This strategy is the optimal page-replacement algorithm looking backward in time, rather than forward.Slide84

84Slide85

Optimal Page Replacement

85

The optimal policy selects for replacement that page for which the time to the next reference is the longest.

An optimal page replacement algorithm has the lowest page fault rate of all algorithms, and will never suffer from

Belady’s anomaly.This algorithm is impossible to implement because it would require the operating system to have perfect knowledge of future events.The optimal page replacement algorithm says the page with the highest label should be removed.Slide86

86Slide87

Example

87

Page Reference String : -

5,4,3,2,1,4,3,5,4,3,2,1,5

Count FIFO , LRUSlide88

Second Chance Algorithm(Clock)

88

The basic algorithm of second-chance replacement is a FIFO replacement algorithm.

When a page has been replaced, however, we inspect its reference bit.

If the value is 0, we proceed to replace this page. If the reference bit is set to 1, however, we give that page a second chance and move on to select the next FIFO page.

When a page gets a second chance, its reference bit is cleared and its arrival time is reset to the current time.

Thus, a page that is given a second chance will not be replaced until all other pages are replaced

,Slide89

89

One way to implement the second chance algorithm is as a circular queue.

A pointer indicates which page is to be replaced next. When a free is needed, the pointer advances until it finds a page with 0 reference bit.

As it advances, it clears the reference

bits.Once a victim page is found, the page is replaced, and the new page is inserted in the circular queue in that position.

Slide90

Thrashing

90

If a process does not have “enough” pages, the page-fault rate

is very

high. This leads to: low CPU utilization operating system thinks that it needs to increase the degree of multiprogramming another process added to the system

Thrashing ≡ a process is busy swapping pages in and

out